Câu 1 : Tính
S=\(\frac{10}{7}\)+\(\frac{10}{7^2}\)+\(\frac{10}{7^3}\)+...+\(\frac{10}{7^{10}}\)
Câu 2:Cho A=\(\frac{4}{15\cdot19}\)+\(\frac{4}{19\cdot23}\)+....+\(\frac{4}{399\cdot403}\).CMR:
\(\frac{16}{81}\)<A<\(\frac{16}{80}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này không khó. Nhưng đánh máy để giải cho bạn thì thực sự khó
\(M=\frac{32}{323}\) \(N=\frac{86}{589}\) \(\frac{M}{N}=\frac{496}{731}\)
\(a.\frac{108}{119}.\frac{107}{211}+\frac{108}{119}.\frac{104}{211}=\frac{108}{119}.\left(\frac{107}{211}+\frac{104}{211}\right)=\frac{108}{119}.1=108\)
a. \(\frac{1}{3}.\frac{4}{5}+\frac{1}{3}.\frac{6}{5}-\)
\(=\frac{1}{3}(\frac{4}{5}+\frac{6}{5})-\frac{5}{3}\)
\(=\frac{1}{3}.2-\frac{5}{3}\)
\(=\frac{2}{3}-\frac{5}{3}\)
\(=-\frac{1}{1}\)
c. \(\frac{6}{7}.\frac{10}{9}+\frac{1}{7}.\frac{10}{9}-\frac{8}{9}\)
\(=\frac{10}{9}\left(\frac{6}{7}+\frac{1}{7}\right)-\frac{8}{9}\)
\(=\frac{10}{9}.1-\frac{9}{8}\)
\(=\frac{10}{9}-\frac{9}{8}\)
\(=-\frac{1}{72}\)
Câu 1:
\(S=\frac{10}{7}+\frac{10}{7^2}+\frac{10}{7^3}+...+\frac{10}{7^{10}}\)
\(\frac{1}{7}S=\frac{10}{7^2}+\frac{10}{7^3}+....+\frac{10}{7^{11}}\)
\(\rightarrow\)\(\left(1-\frac{1}{7}\right).S=\frac{10}{7}-\frac{10}{7^{11}}\)
=> \(S=\frac{10.7^{10}-10}{7^{10}.6}\)