Một xe từ A về B. Trong 3/5 tổng thời gian đầu xe chuyển động vs vận tốc v1. Trong khoảng thời gian còn lại xe chuyển động theo 2 giai đoạn: 1/4 quãng đường còn lại xe chuyển động vs vận tốc 40km/h và cuối cùng xe chuyển động vs vận tốc 30km/h. Vận tốc trung bình của xe trên cả quãng đường là 35km/h, tính vận tốc v1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vận tốc trung bình của xe trên quãng đường còn lại là
\(v'=\dfrac{t\left(\dfrac{2v_2}{3}+\dfrac{v_3}{3}\right)}{t}=\dfrac{1\left(\dfrac{2\cdot50}{3}+\dfrac{40}{3}\right)}{1}=\dfrac{140}{3}\left(\dfrac{km}{h}\right)\)
Vận tốc trung bình trên cả quảng đường là
\(v=\dfrac{s}{s\left(\dfrac{1}{3v_1}+\dfrac{2}{3v'}\right)}=\dfrac{1}{1\left(\dfrac{1}{3\cdot60}+\dfrac{2}{3\cdot\dfrac{140}{3}}\right)}=50,4\left(\dfrac{km}{h}\right)\)
Bạn nếu có phát hiện chỗ sai hay ko hiểu về cách giải của mình thì có thể ib hỏi nha. Mình giải có hơi tắt ý. Chúc bạn một ngày tốt lành!
Gọi t là tổng thời gian xe đi được
S là quảng đường từ A đến B
Ta có: Vận tốc trung bình của người đó:
\(V_{tb}=\frac{S}{t}=\frac{S_1+S_2+S_3}{t}\)
\(=\frac{\frac{40.2}{5}t+\frac{3}{4}S+\frac{12t}{4}}{\frac{2}{5}t+\frac{3}{4.36}S+\frac{1}{4}}\)
\(=\frac{16t+\frac{3}{4}S+3t}{\frac{13}{20}t+\frac{S}{48}}\)
\(=\frac{19t+\frac{3}{4}S}{\frac{13}{20}t+\frac{s}{48}}\)
\(=\frac{19t+\frac{3}{4}.V_{tb}.t}{\frac{13}{20}t+\frac{V_{tb}.t}{48}}\)
\(=\frac{t\left(19+\frac{3V_{tb}}{4}\right)}{t\left(\frac{13}{20}+\frac{1V_{tb}}{48}\right)}\)
\(=\frac{19+\frac{3V_{tb}}{4}}{\frac{13}{20}+\frac{1V_{tb}}{48}}\)
Giải phương trình \(V_{tb}=\) \(=\frac{19+\frac{3V_{tb}}{4}}{\frac{13}{20}+\frac{1V_{tb}}{48}}\) , ta được
V\(_{tb}\) = 32,69 Km/h
1/
Gọi S là độ dài quãng đường AB, gọi t là thời gian chuyển động hết 2/3 quãng đường cuối.Ta có :
\(\dfrac{2}{3}S=v_2.\dfrac{2}{3}t+v_3.\dfrac{1}{3}t\Rightarrow t=\dfrac{2S}{2.v_2+v_3}=\dfrac{2S}{2.45+30}=\dfrac{S}{60}\left(h\right)\)
Mặt khác : \(\dfrac{S}{v}=\dfrac{S}{3v_1}+t\Rightarrow\dfrac{S}{v}=\dfrac{S}{3v_1}+\dfrac{S}{60}\Rightarrow v=40km/h\)
2/gọi t (h) là tổng thời gian xe đi hết quãng đường AB, gọi S là độ dài quãng đường xe đi trong 3/5 tổng thời gian cuối.
Ta có : \(\dfrac{\dfrac{3}{4}S}{v_2}+\dfrac{\dfrac{1}{4}S}{v_3}=\dfrac{3}{5}t\).Thay số => S = 14,4t (km)
Mặt khác: \(v.t=\dfrac{2}{5}t.v_1+S\Rightarrow v.t=\dfrac{2}{5}v_1.t+14,4t\Rightarrow v=30,4km/h\)
Gọi s là độ dài nửa quãng đường. Ta có thời gian đi nửa quãng đường đầu là:
\(t_1=\dfrac{s}{v_1}\)
Gọi thời gian ô tô đi nửa phần còn lại là \(t_2\) và \(t_3\) và \(t_2=t_3\)
Thời gian ô tô đi được trong mỗi đoạn này là:
\(s_2=v_2t_2\)
\(s_3=v_3t_3\)
Mà: \(t_2=t_3=\dfrac{s}{v_2+v_3}\)
Vận tốc \(v_3\) là:
\(v_{tb}=\dfrac{2v_1\left(v_2+v_3\right)}{v_2+v_3+2v_1}\) hay \(40=\dfrac{2\cdot30\cdot\left(45+v_3\right)}{45+v_3+2\cdot30}\)
\(\Leftrightarrow40=\dfrac{60\left(45+v_3\right)}{105+v_3}\)
\(\Leftrightarrow40\left(105+v_3\right)=60\left(45+v_3\right)\)
\(\Leftrightarrow2\left(105+v_3\right)=3\left(45+v_3\right)\)
\(\Leftrightarrow210+2v_3=135+3v_3\)
\(\Leftrightarrow3v_3-2v_3=210-135\)
\(\Leftrightarrow v_3=75\left(km/h\right)\)
a,
\(=>t1=\dfrac{\dfrac{1}{3}S}{60}=\dfrac{S}{180}\left(h\right)\)
\(=>t2=\dfrac{\dfrac{2}{3}S}{45}=\dfrac{2S}{135}\left(h\right)\)
\(=>vtb2=\dfrac{S}{\dfrac{S}{180}+\dfrac{2S}{135}}=\dfrac{S}{\dfrac{495S}{24300}}=\dfrac{24300}{495}=49km/h< v1\)
=> xe 1 đến B trước
b,đổi \(t=20'=\dfrac{1}{3}h\)
\(=>S\left(AB\right)=vtb2.t=49.\dfrac{1}{3}=\dfrac{49}{3}km\)
\(=>t1=\dfrac{S\left(AB\right)}{v1}=\dfrac{\dfrac{49}{3}}{50}\approx0,33h\)
TT:
v1=50km/h
v2=60km/h
v3=45km/h
giải
a/ Tg xe hai đi hết 1/3 quãng đg đầu: t1=\(\dfrac{\dfrac{1}{3}AB}{v2}\)=\(\dfrac{AB}{3v2}\)(h)
Tg xe hai đi hết quãng đường còn lại: t2=\(\dfrac{AB-\dfrac{1}{3}AB}{v3}\)=\(\dfrac{2AB}{3v3}\)(h)
Vận tốc TB xe 2: Vtb=\(\dfrac{AB}{t1+t2}\)=\(\dfrac{AB}{\dfrac{AB}{3v2}+\dfrac{2AB}{3v3}}\)=\(\dfrac{1}{\dfrac{1}{3.60}+\dfrac{2}{3.45}}\)\(\approx\)49,1(km/h)
v1>v2 (50>49,1) \(\Rightarrow\)Xe 1 đi về B trước
gọi s là quãng đường AB
s1,s2,s3 lần lượt là từng quãng đường mà xe di chuyển:
s1 = \(\frac{1}{3}s\)
=> s2 + s3 = \(\frac{2}{3}s\)
Thời gian xe di chuyển trong \(\frac{1}{3}\) quãng đường là:
t1 = \(\frac{s_1}{v_1}=\frac{s}{3.40}=\frac{s}{120}\)
Gọi t' là thời gian đi ở quãng đường (\(\frac{2}{3}s\)) còn lại:
Trong \(\frac{2}{3}\) thời gian đầu, xe đi được quãng đường là
s2 = \(\frac{2}{3}t'.v_2=\frac{2}{3}.t'.45=30t'\)
Quãng đường xe đi được trong thời gian còn lại là:
s3=\(\frac{1}{3}t'.v_3=\frac{1}{3}t'.30=10t'\)
Mặt khác ta có
s2 + s3 = \(\frac{2}{3}s\)
=> 30t' + 10t' = \(\frac{2}{3}s\)
=> 40t'=\(\frac{2}{3}s\)
=> t'=\(\frac{s}{60}\)
Vận tốc trung bình của xe là:
\(v_{tb}=\frac{s}{t+t'}=\frac{s}{\frac{s}{120}+\frac{s}{60}}=\frac{1}{\frac{1}{120}+\frac{1}{60}}=40\)(km/h)
Một xe đi từ A về B, trong nửa quãng đương đầu, xe chuyển động với vận tốc v1= 40 km/h. Trên nửa quãng đường sau xe chuyển động thành 2 giai đoạn: nửa thời gian đầu vận tốc v2 = 45 km/h, thời gian còn lại đi với vận tốc v3 = 30 km/h. Tính vận tốc trung bình của xe trên cả quãng đường AB.
Đề phải như này mới đúng