Số 100! khi phân tích ra thừa số nguyên tố có dạng :
100! = 2x . 3y . 5z . 7t . ... với x,y,z,t thuộc N*.
Tìm x,y,z,t
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên là số 1
Sau đó 2^1, 2^2...2^x có x ước số
3^1, 3^2...3^y có y ước số
Và xy ước số là tổ hợp của (x ước số 2^x và y ước số 3^y)
Tổng các ước số:
=> x+y+xy+1 =30
=> (1+x)(1+y) =30 = 1.30 =2.15 =6.5
do x+y=8, ko có nghiệm, bạn xem lại đề xem
(theo đầu bài thì để cho n nhỏ nhất ta sẽ tìm x lớn nhất và y nhỏ nhất)
1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)
2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)
3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)
Áp dụng t/c dtsbn:
\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)
2:
x+xy+y=4
=>x(y+1)+y+1=5
=>(x+1)(y+1)=5
=>\(\left(x+1;y+1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;4\right);\left(4;0\right);\left(-2;-6\right);\left(-6;-2\right)\right\}\)
100! = 1.2.3.4.5.....98.99.100
+) Tìm x:
Các số chia hết cho 26 = 64 từ 1 đến 100 là : 64 => có 1 số => có 1 x 6 = 6 thừa số 2
Các số chia hết cho 25 = 32 từ 1 đến 100 là 32; 64;96 => có 2 số chỉ chia hết cho 32 => có 2 x 5 = 10 thừa số 2
Các số chia hết cho 24 = 16 từ 1 đến 100 là 16;32;48;64;96 => có 2 số chỉ chia hết cho 16 => có 2 x 4 = 8 thừa số 2
Các số chia hết cho 23 = 8 từ 1 đến 100 là 8;16;24;...; 96 => có (96 -8) : 8 + 1 = 12 số => có 12 - 5 = 7 số chỉ chia hết cho 8
=> 7 x 3 = 21 thừa số 2
Các số chia hết cho 22 = 4 từ 1 đến 100 là: 4;8; 12;...;96 => có (96 - 4) : 4 + 1 = 24 số => có 24 - 12 = 12 số chỉ chia hết cho 4
=> có 12 x 2 = 24 thừa số 2
Các số chia hết cho 2 từ 1 đến 100 là: 2;4;6;...;96 => có (96 - 2) : 2 + 1 = 48 số => có 48 - 24 = 24 số chỉ chia hết cho 2
=> có 24 x 1 = 24 thừa số 2
Vậy trong phân tích 100! có chứa 6 + 10 + 8 + 21 + 24 + 24 = 93 thừa số 2 => x = 93
+) Tương tự, ta tìm đc y; z...