K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

khó bạn ơi

12 tháng 8 2018

vì thế mới hỏi ^_^

23 tháng 3 2022

a) Ta có: \(sin^2x+sin^2\left(90-x\right)=sin^2x+cos^2x=1.\)

áp dụng: A = 2

b)Ta có: \(cos\left(x\right)=-cos\left(180-x\right)\)

áp dụng: B = 0

c) Ta có: \(tan\left(x\right)\cdot tan\left(90-x\right)=\frac{sinx}{cosx}\cdot\frac{sin\left(90-x\right)}{cos\left(90-x\right)}=\frac{sinx}{cosx}\cdot\frac{cosx}{sinx}=1\)

áp dụng: C = 1

27 tháng 3 2022

quá sai

7 tháng 3 2023

Vì Om là phân giác của \(\widehat{xOy}\)

\(\Rightarrow\widehat{IOE}=\widehat{IOF}=\dfrac{1}{2}\widehat{EOF}\)

Vì \(\left\{{}\begin{matrix}IE\perp Ox\\IF\perp Oy\end{matrix}\right.\left(gt\right)\Rightarrow\widehat{IEO}=\widehat{IFO}=90^o\)

Xét \(\Delta IOE\) và \(\Delta IOF\) có: \(\left\{{}\begin{matrix}\widehat{IEO}=\widehat{IFO}\left(=90^o\right)\\OI:chung\\\widehat{IOE}=\widehat{IOF}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta IOE=\Delta IOF\left(\text{cạnh huyền - góc nhọn}\right)\)

b) Vì \(\Delta IOE=\Delta IOF\left(cmt\right)\Rightarrow OE=OF\left(\text{2 cạnh tương ứng}\right)\)

Xét \(\Delta EOF\) có: \(OE=OF\left(cmt\right)\)

\(\Rightarrow\Delta EOF\) cân ở O

\(\Rightarrow\widehat{OEF}=\widehat{OFE}\)

Xét \(\Delta EOF\) có:

\(\widehat{EOF}+\widehat{OFE}+\widehat{OEF}=180^o\)

\(\Rightarrow2\widehat{EOI}+2\widehat{OEF}=180^o\\ \Rightarrow\widehat{EOI}+\widehat{OEF}=90^o\)

Gọi \(EF\cap OI\equiv M\)

Xét \(\Delta OME\) có: 

\(\widehat{OEF}+\widehat{EOI}+\widehat{OME}=180^o\\ \Rightarrow90^o+\widehat{OME}=180^o\\ \Rightarrow\widehat{OME}=180^o-90^o=90^o\\ \Rightarrow EF\perp Om\left(\text{đpcm}\right)\)

18 tháng 4 2023

Cho ���^(0∘<���^<180∘)�� là tia phân giác ���^. Trên tia �� lấy điểm  bất kì. Gọi �,� lần lượt là chân đường vuông góc kẻ từ  đến �� và ��. Chứng minh:

a) △���=△���.

b) ��⊥��.

Hướng dẫn giải:

loading...

a) Xét △��� và △��� có

�^=�^=90∘ (giả thiết);

�� cạnh chung;

���^=���^ (�� là tia phân giác).

Vậy △���=△��� (cạnh huyền - góc nhọn).

b) △���=△��� (chứng minh trên)

⇒��=�� (hai cạnh tương ứng).

Gọi  là giao điểm của �� và ��.

Xét △��� và △���, có

��=�� (chứng minh trên);

���^=���^ (�� là tia phân giác);

OH chung.

Do đó △���=△��� (c.g.c)

⇒���^=���^ (hai góc tương ứng)

Mà ���^+���^=180∘ nên ���^=���^=90∘.

Vậy ��⊥��.