cho tam giác ABC cân tại A trên AB,AC lấy điểm D,E sao cho AD=AE chứng minh AE song song BC
gúp mk vs, mk cần gấp T_T
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
c: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
b, Ta có:AB=AC<=>AE+EB=AD+DC mà AE=AD=>EB=DC
Xét tg BEC và tg CDB có:
-EB=DC(cm trên)
-EBC=DCB
-BC chung
=>tg BEC=tgCDB(c.g.c)
=>BEC=CDB=90o ( tương ứng)
=>CE vuông góc với AB.
Rùi đó.
Xét tam giác ADB và tam giác ADE có:
AB=AE(GT)
Góc BAD=góc ADE(GT)
AD cạnh chung
=>Tam giác ADB=tam giác ADE(c.g.c)(đpcm)
Bài này đáng lẽ phải là TRÊN TIA ĐỐI CA LẤY E SAO CHO BD=CE. Quên vẽ điểm F mà câu a) dễ nên tự thêm vô nha.
a) Ta có ^BFD = ^ACB ( DF // AC, đồng vị)
Mà ^ABC = ^ACB ( tam giác ABC cân tại A)
=> ^ABC = ^BFD
Vậy tam giác FBD cân tại D (đpcm)
b) Kẻ \(DM\perp BC;EN\perp BC\)
Ta thấy ngay: \(\Delta BDM=\Delta CEN\left(ch-gn\right)\)
=> MD = NE (hai cạnh tương ứng)
=> \(\Delta DMI=\Delta ENI\left(g.c.g\right)\)
=> DI = EI hay I là trung điểm của DE (đpcm)
c) Ta có: AD + AE = AB - BD + AC + CE = AB + AC = 2AB (không đổi)
=> đpcm...
Đề bị sai em kiểm tra lại đề đi! Chỗ trên AB lấy D , trên tia đối AC lấy E sao cho BD = CE ấy.
Theo đề ra ,chứng minh AE // BC là điều vô lí .
Ps: Chứng minh DE // BC .
Vì \(\Delta ABC\)Cân (GT)
\(\Rightarrow AB=AC\) (1)
và \(\widehat{B}=\widehat{C}\)
Ta lại có : \(AD=AE\)(GT) (2)
Từ (1) và (2) [ cộng vế với vế ]
\(\frac{+\orbr{\begin{cases}AB=AC\\AD=AE\end{cases}}}{\Rightarrow BD=CE}\)
Từ đó ,áp dụng tính chất đường trung bình
\(\Rightarrow DE//BC\) (đpcm)