Lớp 7A có 52 học sinh chia làm 3 tổ,nếu tổ 1 bớt đi 1 học sinh,tổ 2 bớt đi 2 học sinh,tổ 3 thêm 3 học sinh thì số học sinh tở 1,2,3 tỉ lệ nghịch với 3,4,2.Tìm số học sinh mỗi tổ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh tổ 1 ; tổ 2 ; tổ 3 lần lượt là a,b,c .
Theo đề bài ta có : 3a=4b=2c <=> \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{2}}\) (a+b+c=52)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{2}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{2}}=\frac{52}{\frac{13}{12}}=48\)
\(\frac{a}{\frac{1}{3}}=48\Rightarrow a=48.\frac{1}{3}=16+1=17\)
\(\frac{b}{\frac{1}{4}}=48\Rightarrow b=48.\frac{1}{4}=12+2=14\)
\(\frac{c}{\frac{1}{2}}=48\Rightarrow c=48.\frac{1}{2}=24-3=21\)
Vậy tổ 1 có 17 em ; tổ 2 có 14 em ; tổ 3 có 21 em
Gọi số hs của ba tổ lần lượt là x,y,z(52>x,y,z>0;hs)
theo đề bài ta có: nếu tổ 1 bớt đi 1hs,tổ 2 bớt đi 2hs và tổ 3 thêm 3hs thì số hs 3 tổ tỉ lệ nghịc vs 3,4,2,nên ta đc:\dfrac{x-1}{\dfrac{1}{3}}=\dfrac{y-2}{\dfrac{1}{4}}=\dfrac{z+3}{\dfrac{1}{2}}31x−1=41y−2=21z+3 và x+y+z=52
Áp dụng tính chất dãy tỉ số bằng nhau,ta đc:
\dfrac{x-1}{\dfrac{1}{3}}=\dfrac{y-2}{\dfrac{1}{4}}=\dfrac{z+3}{\dfrac{1}{2}}=\dfrac{x-1+y-2+z+3}{\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{2}}=\dfrac{52}{\dfrac{13}{12}}=4831x−1=41y−2=21z+3=31+41+21x−1+y−2+z+3=121352=48
\Rightarrow x-1=\dfrac{1}{3}.48=16\Rightarrow x=16+1=17⇒x−1=31.48=16⇒x=16+1=17
y-2=\dfrac{1}{4}.48=12\Rightarrow y=12+2=14y−2=41.48=12⇒y=12+2=14
z+3=\dfrac{1}{2}.48=24\Rightarrow z=24-3=21z+3=21.48=24⇒z=24−3=21
Vậy số hs của tổ 1,2,3 lần lượt là:17,14,21(hs)
Gọi số hs của ba tổ lần lượt là x,y,z(52>x,y,z>0;hs)
theo đề bài ta có: nếu tổ 1 bớt đi 1hs,tổ 2 bớt đi 2hs và tổ 3 thêm 3hs thì số hs 3 tổ tỉ lệ nghịc vs 3,4,2,nên ta đc:\dfrac{x-1}{\dfrac{1}{3}}=\dfrac{y-2}{\dfrac{1}{4}}=\dfrac{z+3}{\dfrac{1}{2}}31x−1=41y−2=21z+3 và x+y+z=52
Áp dụng tính chất dãy tỉ số bằng nhau,ta đc:
\dfrac{x-1}{\dfrac{1}{3}}=\dfrac{y-2}{\dfrac{1}{4}}=\dfrac{z+3}{\dfrac{1}{2}}=\dfrac{x-1+y-2+z+3}{\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{2}}=\dfrac{52}{\dfrac{13}{12}}=4831x−1=41y−2=21z+3=31+41+21x−1+y−2+z+3=121352=48
\Rightarrow x-1=\dfrac{1}{3}.48=16\Rightarrow x=16+1=17⇒x−1=31.48=16⇒x=16+1=17
y-2=\dfrac{1}{4}.48=12\Rightarrow y=12+2=14y−2=41.48=12⇒y=12+2=14
z+3=\dfrac{1}{2}.48=24\Rightarrow z=24-3=21z+3=21.48=24⇒z=24−3=21
Vậy số hs của tổ 1,2,3 lần lượt là:17,14,21(hs)
Gọi só hs tổ 1,2,3 lần lượt là : a,b,c
Theo đề bài ta có : 3a=4b=2c <=> \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{2}}\left(a+b+c=52\right)\)
Áp dụng t/c DTSBN,ta có :
\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{2}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{2}}=\frac{52}{\frac{13}{12}}\)\(=48\)
\(a=\frac{1}{3}.48=16+1=17\)
\(b=\frac{1}{4}.48=12+2=14\)
\(c=\frac{1}{2}.48=24-3=21\)
Vậy tổ 1 có 17hs
Tổ 2 có 14 hs
Tổ 3 có 21 hs
Ta sẽ gọi số hs của ba tổ lần lượt là x,y,z(52>x,y,z>0;hs)
Vậy bài ra ta sẽ có:
Nếu tổ 1 bớt đi 1hs,tổ 2 bớt đi 2hs và tổ 3 thêm 3hs
=> Số hs 3 tổ tỉ lệ nghịch vs 3,4,2
Vậy ta sẽ được :x−113=y−214=z+312 và x+y+z=52
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
x−113=y−214=z+312
=x−1+y−2+z+313+14+12
=521312
=48
⇒x−1=13.48=16
⇒x=16+1=17
y−2=14.48=12
⇒y=12+2=14
z+3=12.48=24
⇒z=24−3=21
Do đó số hs của tổ 1,2,3 lần lượt là:17,14,21(hs)
Gọi số học sinh tổ 1, tổ 2, tổ 3 lần lượt là: a, b, c (học sinh ; \(a,b,c\ne0\)).
Theo đề bài, vì số học sinh tổ 1, tổ 2, tổ 3 lần lượt tỉ lệ nghịch với 3, 4, 2 nên ta có:
\(3a=4b=2c.\)
\(\Rightarrow\frac{3a}{60}=\frac{4b}{60}=\frac{2c}{60}.\)
\(\Rightarrow\frac{a}{20}=\frac{b}{15}=\frac{c}{30}\) và \(a+b+c=52\left(họcsinh\right).\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{20}=\frac{b}{15}=\frac{c}{30}=\frac{a+b+c}{20+15+30}=\frac{52}{65}=\frac{4}{5}.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{20}=\frac{4}{5}\Rightarrow a=\frac{4}{5}.20=16+1=17\left(họcsinh\right)\\\frac{b}{15}=\frac{4}{5}\Rightarrow b=\frac{4}{5}.15=12+2=14\left(họcsinh\right)\\\frac{c}{30}=\frac{4}{5}\Rightarrow c=\frac{4}{5}.30=24-3=21\left(họcsinh\right)\end{matrix}\right.\)
Vậy số học sinh của tổ 1 là: 17 học sinh.
số học sinh của tổ 2 là: 14 học sinh.
số học sinh của tổ 3 là: 21 học sinh.
Chúc bạn học tốt!
Gọi số học sinh của 3 tổ lần lượt là x, y, z (x, y, z ∈ N*)
Từ đề bài có tổ 1 bớt đi 1 học sinh, tổ 2 bớt đi 2 học sinh, tổ 3 thêm vào 3 học sinh thì số học sinh của 3 tổ tỉ lệ nghịch với 3, 4, 2 tức là:
\(\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{4}}=\frac{z+3}{\frac{1}{2}}\)
\(x+y+z=52\) (học sinh)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{4}}=\frac{z+3}{\frac{1}{2}}=\frac{x-1+y-2+x+3}{\frac{1}{3}+\frac{1}{4}+\frac{1}{2}}=48\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=\frac{1}{3}.48=16\Rightarrow x=16+1=17\\y-2=\frac{1}{4}.48=12\Rightarrow y=12+2=14\\z+3=\frac{1}{2}.48=24\Rightarrow z=24-3=21\end{matrix}\right.\)
Vậy...
Gọi số hs của ba tổ lần lượt là x,y,z(52>x,y,z>0;hs)
theo đề bài ta có: nếu tổ 1 bớt đi 1hs,tổ 2 bớt đi 2hs và tổ 3 thêm 3hs thì số hs 3 tổ tỉ lệ nghịc vs 3,4,2,nên ta đc:\(\dfrac{x-1}{\dfrac{1}{3}}=\dfrac{y-2}{\dfrac{1}{4}}=\dfrac{z+3}{\dfrac{1}{2}}\) và x+y+z=52
Áp dụng tính chất dãy tỉ số bằng nhau,ta đc:
\(\dfrac{x-1}{\dfrac{1}{3}}=\dfrac{y-2}{\dfrac{1}{4}}=\dfrac{z+3}{\dfrac{1}{2}}=\dfrac{x-1+y-2+z+3}{\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{2}}=\dfrac{52}{\dfrac{13}{12}}=48\)
\(\Rightarrow x-1=\dfrac{1}{3}.48=16\Rightarrow x=16+1=17\)
\(y-2=\dfrac{1}{4}.48=12\Rightarrow y=12+2=14\)
\(z+3=\dfrac{1}{2}.48=24\Rightarrow z=24-3=21\)
Vậy số hs của tổ 1,2,3 lần lượt là:17,14,21(hs)