Cho C=\(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\cdot\cdot\dfrac{199}{200}\) Chứng minh C2<\(\dfrac{1}{201}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(A=\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{98}{99}\)
\(A< \dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\dfrac{7}{8}\cdot...\cdot\dfrac{99}{100}\)
\(\Rightarrow A^2< \dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot\dfrac{5}{6}\cdot\dfrac{6}{7}\cdot\dfrac{7}{8}\cdot...\cdot\dfrac{98}{99}\cdot\dfrac{99}{100}\)
\(A^2< \dfrac{2}{100}=\dfrac{1}{50}\)
Mà \(\dfrac{1}{50}< \dfrac{1}{49}\)
\(\Rightarrow A^2< \dfrac{1}{49}\)
\(\Rightarrow A< \dfrac{1}{7}\left(đpcm\right)\)
Ta có : M . N = \(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{100}{101}\)
= \(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{100}{101}\)
= \(\dfrac{1}{101}\)
Vậy M . N = \(\dfrac{1}{101}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\)
Ta có:
\(\dfrac{4.a-5.b}{4.a+5.b}=\dfrac{4.a+5.b-10.b}{4.a+5.b}=1-\dfrac{10.b}{4.a+5.b}=1-\dfrac{10.b}{4.b.k+5b}=1-\dfrac{10}{4.k+5}\) (1)
\(\dfrac{4.c-5.d}{4.c+5.d}=\dfrac{4.c+5.d-10.d}{4.c+5.d}=1-\dfrac{10.d}{4.c+5.d}=1-\dfrac{10.d}{4.d.k+5.d}=1-\dfrac{10}{4.k+5}\) (2)
Từ (1) và (2) suy ra \(\dfrac{4.a-5.b}{4.a+5.b}=\dfrac{4.c-5.d}{4.c+5.d}\left(đpcm\right)\)
Lời giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\)
Khi đó ta có:
\(\frac{4a-5b}{4a+5b}=\frac{4bt-5b}{4bt+5b}=\frac{b(4t-5)}{b(4t+5)}=\frac{4t-5}{4t+5}\)
\(\frac{4c-5d}{4c+5d}=\frac{4dt-5d}{4dt+5d}=\frac{d(4t-5)}{d(4t+5)}=\frac{4t-5}{4t+5}\)
Do đó: \(\frac{4a-5b}{4a+5b}=\frac{4c-5d}{4c+5d}\) (đpcm)
\(a.\)
\(-\dfrac{2}{3}\cdot\dfrac{?}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{?}{4}=\dfrac{1}{2}:-\dfrac{2}{3}=\dfrac{1}{2}\cdot-\dfrac{3}{2}=-\dfrac{3}{4}\)
\(\Leftrightarrow?=-3\)
\(b.\)
\(\dfrac{?}{3}\cdot\dfrac{5}{8}=-\dfrac{5}{12}\)
\(\Leftrightarrow\dfrac{?}{3}=\dfrac{-5}{12}:\dfrac{5}{8}=\dfrac{-5}{12}\cdot\dfrac{8}{5}=-\dfrac{2}{3}\)
\(\Leftrightarrow?=-2\)
\(c.\)
\(\dfrac{5}{6}\cdot\dfrac{3}{?}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{3}{?}=\dfrac{1}{4}:\dfrac{5}{6}=\dfrac{1}{4}\cdot\dfrac{6}{5}=\dfrac{3}{10}\)
\(\Leftrightarrow?=10\)
Mk gọi ? = x nha
a) \(\dfrac{-2}{3}.\dfrac{x}{4}=\dfrac{1}{2}\)
\(\dfrac{x}{4}=\dfrac{1}{2}:\dfrac{-2}{3}\)
\(\dfrac{x}{4}=\dfrac{-3}{4}\)
⇒x=-3
b)\(\dfrac{x}{3}.\dfrac{5}{8}=\dfrac{-5}{12}\)
\(\dfrac{x}{3}=\dfrac{-5}{12}:\dfrac{5}{8}\)
\(\dfrac{x}{3}=\dfrac{-2}{3}\)
⇒x=-2
c)\(\dfrac{5}{6}.\dfrac{3}{x}=\dfrac{1}{4}\)
\(\dfrac{3}{x}=\dfrac{1}{4}:\dfrac{5}{6}\)
\(\dfrac{3}{x}=\dfrac{3}{10}\)
⇒x=10
Lời giải:
Ta có:
\(\text{VT}=\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.....\frac{30}{62}.\frac{31}{64}=\frac{1.2.3....31}{2.4.6.8...64}\)
Xét mẫu số:
\(2.4.6.8.....62.64=(2.1)(2.2)(2.3)(2.4)....(2.31)(2.32)\)
\(=2^{32}(1.2.3....31.32)\)
Suy ra:
\(\text{VT}=\frac{1.2.3....31}{2^{32}.(1.2.3...31.32)}=\frac{1}{2^{32}.32}=\frac{1}{2^{37}}\)
Do đó \(4^x=\frac{1}{2^{37}}\Leftrightarrow 2^{2x}=\frac{1}{2^{37}}\Leftrightarrow 2^{2x+37}=1\)
\(\Leftrightarrow 2x+37=0\Leftrightarrow x=-\frac{37}{2}\)
Vậy \(x=\frac{-37}{2}\)
Bài 1:
\(a,=\frac{2}{3}-\frac{16}{3}=\frac{-14}{3}\)
\(b,=\left(\frac{3}{7}+\frac{4}{7}\right)+\left(-\frac{6}{19}+\frac{-13}{19}\right)=1-1=0\)
\(c,=\frac{3}{5}.\left(\frac{8}{9}-\frac{7}{9}+\frac{26}{9}\right)=\frac{3}{5}.3=\frac{9}{5}\)
a,\(\dfrac{1}{2}\).\(\dfrac{4}{3}\)-\(\dfrac{20}{3}\).\(\dfrac{4}{5}\)=\(\dfrac{2}{3}\)-\(\dfrac{16}{3}\)=-\(\dfrac{14}{3}\)
Ta có:\(C=\dfrac{1}{2}.\dfrac{3}{4}.....\dfrac{199}{200}\)
\(\Rightarrow C< \dfrac{2}{3}.\dfrac{4}{5}.....\dfrac{200}{201}\)
\(\Rightarrow C^2< \dfrac{2}{3}.\dfrac{4}{5}.....\dfrac{200}{201}.\dfrac{1}{2}.\dfrac{3}{4}.....\dfrac{199}{200}\)
\(\Rightarrow C^2< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.....\dfrac{199}{200}.\dfrac{200}{201}\)
\(\Rightarrow C^2< \dfrac{1}{201}\) (đpcm)
good luck