K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2018

Vì điểm O không cố định. Ta có thể lách luật như sau: Bài toán luôn đúng với mọi vị trí của O. ta giả sử với điểm O ta nối sao cho M, N, P lần lượt là TĐ của BC; CA; AB thì bài toán dễ đi rất nhiều. Song như thế e cùn quá. Ta làm sau: a) PA/PB=S(CAP)/S(CPB) (chung đường cao hạ từ C xuống AB) Tương tự MB/MC= S(ABM)/ S(AMC)(chung đường cao hạ từ A xuống BC) AN/NC= S(BAN)/S(BCN) (chung đường cao hạ từ B xuống AC) PA/PBxMB/MCxAN/NC= S(CAP)/S(CPB)xS(ABM)/ S(AMC)xS(BAN)/S(BCN)=1 b)PO/PC= S(AOP)/ S(APC) MO/MA= S(CMO)/ S(CAM) NO/NB= S(ANO)/ ABN) Cộng hai vế ta có: PO/PC+MO/MA+NO/NB=S(AOP)/ S(APC)+S(CMO)/ S(CAM)+S(ANO)/ ABN)

15 tháng 9 2019

Vì điểm O không cố định. Ta có thể lách luật như sau: Bài toán luôn đúng với mọi vị trí của O. ta giả sử với điểm O ta nối sao cho M, N, P lần lượt là TĐ của BC; CA; AB thì bài toán dễ đi rất nhiều. Song như thế e cùn quá. Ta làm sau:
a) PA/PB=S(CAP)/S(CPB) (chung đường cao hạ từ C xuống AB)
Tương tự MB/MC= S(ABM)/ S(AMC)(chung đường cao hạ từ A xuống BC)
AN/NC= S(BAN)/S(BCN) (chung đường cao hạ từ B xuống AC)
PA/PBxMB/MCxAN/NC= S(CAP)/S(CPB)xS(ABM)/ S(AMC)xS(BAN)/S(BCN)=1
b)PO/PC= S(AOP)/ S(APC)
MO/MA= S(CMO)/ S(CAM)
NO/NB= S(ANO)/ ABN)
Cộng hai vế ta có: PO/PC+MO/MA+NO/NB=S(AOP)/ S(APC)+S(CMO)/ S(CAM)+S(ANO)/ ABN)

a) Xét ΔABC có 

AM là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

Xét ΔABC có 

BN là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{NC}{NA}=\dfrac{BC}{AB}\)(Tính chất đường phân giác của tam giác)

Xét ΔABC có 

CP là đường phân giác ứng với cạnh AB(gt)

nên \(\dfrac{PA}{PB}=\dfrac{AC}{BC}\)(Tính chất đường phân giác của tam giác)

Ta có: \(\dfrac{MB}{MC}\cdot\dfrac{NC}{NA}\cdot\dfrac{PA}{PB}\)

\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{AB}\cdot\dfrac{AC}{BC}\)

\(=\dfrac{AB\cdot AC\cdot BC}{AB\cdot AC\cdot BC}=1\)(đpcm)

NM
14 tháng 2 2021

A B C M P N H

Kẻ CH song song MP và H thuộc AB 

ta có 

\(\hept{\begin{cases}\frac{NB}{NC}=\frac{MB}{MH}\\\frac{PC}{PA}=\frac{MH}{MA}\end{cases}\Rightarrow\frac{MA}{MB}.\frac{NB}{NC}.\frac{PC}{PA}=}\frac{MA}{MB}.\frac{MB}{MH}.\frac{MH}{MA}=1\)vậy ta có dpcm