K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

a)

\(AB\parallel CD\) nên áp dụng định lý Ta-let ta có:

\(\frac{DM}{MN}=\frac{MC}{AM}(1)\)

Kẻ \(MT\parallel AB\parallel CD\). Áp dụng định lý Ta-let:

+) Cho tam giác $KDC$: \(\frac{MK}{DK}=\frac{MT}{DC}=\frac{MT}{AB}\)

+) Cho tam giác $ACB$: \(\frac{MT}{AB}=\frac{MC}{AC}\)

\(\Rightarrow \frac{MK}{DK}=\frac{MC}{AC}\Rightarrow \frac{MK}{MK+DM}=\frac{MC}{MC+AM}\)

\(\Rightarrow \frac{MK}{DM}=\frac{MC}{AM}(2)\)

Từ \((1);(2)\Rightarrow \frac{DM}{MN}=\frac{MK}{DM}\Rightarrow DM^2=MN.MK\) (đpcm)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

b)

Áp dụng liên hoàn định lý Ta-let cho các đoạn song song:

\(\frac{MK}{DK}=\frac{MT}{DC}=\frac{MT}{AB}\)

\(\frac{MT}{AB}=\frac{MC}{AC}\)

\(\Rightarrow \frac{MK}{DK}=\frac{MC}{AC}\Leftrightarrow 1-\frac{MK}{DK}=1-\frac{MC}{AC}\)

\(\Rightarrow \frac{DM}{DK}=\frac{AM}{AC}(1)\)

Và: \(\frac{DM}{MN}=\frac{MC}{AM}\Rightarrow \frac{DM}{DM+MN}=\frac{MC}{MC+AM}\)

\(\Rightarrow \frac{DM}{DN}=\frac{MC}{AC}(2)\)

Từ \((1);(2)\Rightarrow \frac{DM}{DK}+\frac{DM}{DN}=\frac{AM+MC}{AC}=1\)

\(\Rightarrow \frac{1}{DK}+\frac{1}{DN}=\frac{1}{DM}\)

Ta có đpcm.

11 tháng 1 2017

câu a 

xét tam giác MDC có

NA//DC (AB//DC)

\(\Rightarrow\frac{MN}{MD}=\frac{MA}{MC}\)( hệ quả Thales) (1)

xét tam giác MKC có

DA//CK (DA//BC)

\(\Rightarrow\frac{MD}{MK}=\frac{MA}{MC}\)( hệ quả Thales) (2)

từ (1) và (2) \(\Rightarrow\frac{MD}{MK}=\frac{MN}{MD}\)

\(\Rightarrow MD^2=MN.MK\)

câu b mình chưa giải đc nhé

19 tháng 10 2017

Bài này bạn lấy ở đâu thế

27 tháng 1 2018

câu c có sai đề ko bạn ơi