K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Bài 3) 

Ta có :

\(x^3+y^3+z^3-3xyz\)

\(\Rightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(\Rightarrow\left(x+y+z\right)\left[\left(x+y^2\right)-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

P/s tham khảo nha

hok tốt

10 tháng 11 2021

x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz

=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz

=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz

=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3

=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]

=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)

=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]

=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]

=(x+y+z)(x-y-z)(z-x-y)

10 tháng 11 2021

x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz

=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz

=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz

=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3

=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]

=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)

=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]

=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]

=(x+y+z)(x-y-z)(z-x-y)

2 tháng 8 2021

\(z^3\left(x+y^2\right)+y^3\left(z-x^2\right)-x^3\left(y+z^2\right)-xyz\left(xyz-1\right)\)

\(=xz^3+y^2z^3+y^3z-x^2y^3-x^3-x^3z^2-x^2y^2z^2+xyz\)

\(=\left(y^2z^3+y^3z\right)+\left(xz^3+xyz\right)-\left(x^2y^3+x^2y^2z^2\right)-x^3\left(y+z^2\right)\)

\(=y^2z\left(y+z^2\right)+xz\left(y+z^2\right)-x^2y^2\left(y+z^2\right)-x^3\left(y+z^2\right)\)

\(=\left(y+z^2\right)\left(y^2z+xz-x^2y^2-x^3\right)\)

\(=\left(y+z^2\right)\left[z\left(y^2+x\right)-x^2\left(y^2+x\right)\right]\)

\(=\left(y+z^2\right)\left(z-x^2\right)\left(y^2+x\right)\)

Tick hộ nha bạn 😘

 

2 tháng 8 2021

z^3(x+y^2)+y^3(z-x^2)-x^3(y+z^2)-xyz(xyz-1)

 
10 tháng 11 2021

x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz

=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz

=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz

=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3

=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]

=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)

=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]

=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]

=(x+y+z)(x-y-z)(z-x-y)

5 tháng 9 2021

tham khảo:https://hoc247.net/hoi-dap/toan-8/phan-tich-da-thuc-x-2-y-2-3-z-2-x-2-3-y-2-z-2-3-thanh-nhan-tu-faq358831.html

5 tháng 9 2021

Tham khảo: https://loga.vn/hoi-dap/phan-tich-cac-da-thuc-sau-thanh-nhan-tu-a-2-y2-3-z2-2-3-y2-z2-3-b-y-3-3-y3-60116

11 tháng 7 2021

Đây bạn nhé 

Bạn làm theo người này nhé, mik cũng khum bt. mik chỉ nhắc để bn có đáp án nhanh nhất thui undefined

 

b: \(=\dfrac{12\left(y-z\right)^4+3\left(y-z\right)^5}{6\left(y-z\right)^2}=2\left(y-z\right)^2+\dfrac{1}{2}\left(y-z\right)^3\)

17 tháng 11 2019

a) (x - 1)(x + l)(x - 2)(x - 4).      b) (x - 2)( x 2  + 4).

c) 2y(3 x 2   +   y 2 ).                          d) 2(x + y + z) ( a   -   b ) 2 .

24 tháng 8 2021

a. \(x^2\left(x-3\right)^2-\left(x-3\right)^2-x^2+1\)

\(=\left(x-3\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left[\left(x-3\right)^2-1\right]\left(x^2-1\right)\)

\(=\left(x-3+1\right)\left(x-3-1\right)\left(x+1\right)\left(x-1\right)\)

\(=\left(x-2\right)\left(x-4\right)\left(x+1\right)\left(x-1\right)\)

b. \(x^3-2x^2+4x-8\)

\(=\left(x^3+4x\right)-\left(2x^2+8\right)\)

\(=x\left(x^2+4\right)-2\left(x^2+4\right)\)

\(=\left(x-2\right)\left(x^2+4\right)\)

c. \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x^3-3x^2y+3xy^2-y^3\right)\)

\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)

\(=6x^2y+2y^3\)

\(=2y\left(3x^2+y^2\right)\)

d. \(2a^2\left(x+y+z\right)-4ab\left(x+y+z\right)+2b^2\left(x+y+z\right)\)

\(=\left(2a^2-4ab+2b^2\right)\left(x+y+z\right)\)

\(=2\left(a^2-2ab+b^2\right)\left(x+y+z\right)\)

\(=2\left(a-b\right)^2\left(x+y+z\right)\)