K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2021

mọi người ơi mình cần gấp ạ

 

4 tháng 7 2021

a) \(x>0,x\ne1\)

b) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}.\left(\sqrt{x}-1\right)=\dfrac{x-1}{\sqrt{x}}\)

c) \(P< 0\Rightarrow\dfrac{x-1}{\sqrt{x}}< 0\) mà \(\sqrt{x}>0\Rightarrow x-1< 0\Rightarrow x< 1\Rightarrow0< x< 1\)

23 tháng 10 2021

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

b: Ta có: \(D=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{5\sqrt{x}+5}{x-4}\right)\cdot\dfrac{x-4}{\sqrt{x}}\)

\(=\dfrac{x+4\sqrt{x}+4-x+4\sqrt{x}-5\sqrt{x}-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{x-4}{\sqrt{x}}\)

\(=\dfrac{3\sqrt{x}-1}{\sqrt{x}}\)

8 tháng 5 2019

Điều kiện để biểu thức P tồn tại là: \(\left\{{}\begin{matrix}x\ne4\\x>0\end{matrix}\right.\)

P = \(\left(\frac{4\sqrt{x}}{2-\sqrt{x}}-\frac{8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}-4\right)+x+2\sqrt{x}}{\sqrt{x}\left(x+2\sqrt{x}\right)}\right)\)

= \(\left(\frac{4\sqrt{x}\left(2+\sqrt{x}\right)-8x}{4-x}\right):\left(\frac{x-4\sqrt{x}+x+2\sqrt{x}}{\sqrt{x}\left(x+2\sqrt{x}\right)}\right)\)

= \(\frac{8\sqrt{x}-4x}{4-x}\cdot\frac{\sqrt{x}\left(x+2\sqrt{x}\right)}{2x-2\sqrt{x}}\)

= \(\frac{4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\cdot\frac{x\left(\sqrt{x}+2\right)}{2\left(x-\sqrt{x}\right)}\)

=\(\frac{2x\sqrt{x}}{x-\sqrt{x}}\)