Cho tâm giác ABC vuông tại A, đường cao AH. Biết AB=3, AC=4.
a)Tính AH,BH?
b)Chứng minh CB là tiếp tuyến của đường tròn(A,AH)
c)Kẻ tiếp tuyến BI và CK với đường tròn (A,AH)(I,K là tiếp điểm)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}=\dfrac{1}{9}+\dfrac{1}{16}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{16}{144}+\dfrac{9}{144}=\dfrac{25}{144}\)
\(\Leftrightarrow AH^2=\dfrac{144}{25}\)
hay \(AH=\dfrac{12}{5}=2.4\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=3^2-2.4^2=3.24\)
hay BH=1,8
Vậy: AH=2,4; BH=1,8
b) Xét (A;AH) có
AH là bán kính
CH⊥AH tại H(gt)
Do đó: CH là tiếp tuyến của (A;AH)(Dấu hiệu nhận biết tiếp tuyến đường tròn)
hay CB là tiếp tuyến của (A;AH)(đpcm)
c)
1) Xét (A) có
CH là tiếp tuyến có H là tiếp điểm(cmt)
CK là tiếp tuyến có K là tiếp điểm(gt)
Do đó: CH=CK(Tính chất hai tiếp tuyến cắt nhau)
Xét (A) có
AH là bán kính
BH⊥AH tại H(gt)
Do đó: BH là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)
Xét (A) có
BH là tiếp tuyến có H là tiếp điểm(cmt)
BI là tiếp tuyến có I là tiếp điểm(gt)
Do đó: BH=BI(Tính chất hai tiếp tuyến cắt nhau)
Ta có: BH+CH=BC(H nằm giữa B và C)
mà BH=BI(cmt)
và CH=CK(cmt)
nên BC=BI+CK(đpcm)
2) Xét (A) có
BH là tiếp tuyến có H là tiếp điểm(cmt)
BI là tiếp tuyến có I là tiếp điểm(gt)
Do đó: AB là tia phân giác của \(\widehat{HAI}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{HAI}=2\cdot\widehat{HAB}\)
Xét (A) có
CK là tiếp tuyến có K là tiếp điểm(gt)
CH là tiếp tuyến có H là tiếp điểm(cmt)
Do đó: AC là tia phân giác của \(\widehat{HAK}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{HAK}=2\cdot\widehat{CAH}\)
Ta có: \(\widehat{KAI}=\widehat{KAH}+\widehat{IAH}\)(tia AH nằm giữa hai tia AK,AI)
mà \(\widehat{HAI}=2\cdot\widehat{HAB}\)(cmt)
và \(\widehat{HAK}=2\cdot\widehat{CAH}\)(cmt)
nên \(\widehat{KAI}=2\cdot\widehat{HAB}+2\cdot\widehat{HAC}\)
\(\Leftrightarrow\widehat{KAI}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
\(\Leftrightarrow\widehat{KAI}=2\cdot90^0=180^0\)
hay K,A,I thẳng hàng(đpcm)
a: BC=10cm
AH=6*8/10=4,8cm
BH=AB^2/BC=3,6cm
b: Vì BH vuông góc với AH tại H
nên CB là tiếp tuyến của (A';AH)
Vì BE , BH là các tiếp tuyến của (O)
=> AB là phân giác ^EAH
=> \(\widehat{BAH}=\frac{\widehat{EAH}}{2}\)
Tương tự \(\widehat{CAH}=\frac{\widehat{HÀF}}{2}\)
\(\Rightarrow\widehat{BAH}+\widehat{CAH}=\frac{\widehat{EAH}+\widehat{HAF}}{2}\)
\(\Rightarrow\frac{\widehat{EAH}+\widehat{HÀF}}{2}=90^o\)
\(\Rightarrow\widehat{EAH}+\widehat{HAF}=180^o\)
=> E , A , F thẳng hàng
=> EF là đường kính (A)
=> A là trung điểm EF
VÌ BE , CF là 2 tiếp tuyến của (A)
=> \(BE\perp EF\)và \(CF\perp EF\)
\(\Rightarrow BE\)// \(CF\)
=> BEFC là hình thang đáy BE , CF
Xét hình thang BEFC có A là trung điểm EF
I là trung điểm BC
=> AI là đường trung bình hình thang BEFC
=> AI // EF
Mà \(EF\perp FC\)(tiếp tuyến)
=> \(AI\perp AF\)
=> \(\Delta AIF\)vuông tại A
=> \(sinF_1=\frac{AI}{IF}\)
Giờ cần tính AI và IF nữa là xong !
Áp dụng định lí Py-ta-go vào \(\Delta\)ABC vuông tại A
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow3^2+6^2=BC^2\)
\(\Leftrightarrow BC^2=45\)
\(\Leftrightarrow BC=3\sqrt{5}\)(Do BC > 0)
Vì \(\Delta\)ABC vuông tại A có AI là đường trung tuyến
=> \(AI=\frac{BC}{2}=\frac{3\sqrt{5}}{2}\)
Áp dụng hệ thức lượng vào \(\Delta\)ABC vuông tại A đường cao AH
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(=\frac{1}{3^2}+\frac{1}{6^2}\)
\(=\frac{5}{36}\)
\(\Rightarrow AH^2=\frac{36}{5}\)
\(\Rightarrow AF^2=\frac{36}{5}\)(Do AH = À vì cùng là bán kính (A) )
Áp dụng định lí Py-ta-go vào tam giác AIF vuông tại A
\(AI^2+AF^2=IF^2\)
\(\Rightarrow\left(\frac{3\sqrt{5}}{2}\right)^2+\frac{36}{5}=IF^2\)
\(\Rightarrow IF^2=\frac{369}{20}\)
\(\Rightarrow IF=\sqrt{\frac{369}{20}}=\frac{3\sqrt{205}}{10}\)
Khi đó \(sinF_1=\frac{AI}{IF}=\frac{3\sqrt{5}}{2}:\frac{3\sqrt{205}}{10}=\frac{5}{\sqrt{41}}\)
Vậy \(sinF_1=\frac{5}{\sqrt{41}}\)
\(\left\{{}\begin{matrix}\widehat{DCA}=\widehat{HCA}\\\widehat{DCA}+\widehat{DAC}=90^0\\\widehat{HCA}+\widehat{HBA}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{HBA}=\widehat{DAC}\)
\(\left\{{}\begin{matrix}\widehat{DAC}+\widehat{BAE}=90^0\\\widehat{HBA}+\widehat{HAB}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{BAE}=\widehat{HAB}\)
Có \(\left\{{}\begin{matrix}AH=AE=R\\\widehat{BAE}=\widehat{HAB}\\\text{AB chung}\end{matrix}\right.\) \(\Rightarrow\Delta AHB=\Delta AEB\)
\(\Rightarrow\widehat{E}=\widehat{H}=90^0\Rightarrow BE\) là tiếp tuyến
a: BC=5
\(AH=\dfrac{3\cdot4}{5}=2.4\)
\(BH=\dfrac{9}{5}=1.8\)
b: Vì BH vuông góc với HA tại H
nên CB là tiếp tuyến của (A;AH)