K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2020

Ta có : \(B=\frac{y}{2}+\frac{3}{4}\sqrt{1-4y+4y^2}-\frac{3}{2}\)

=> \(B=\frac{2y-6}{4}+\frac{3}{4}\sqrt{\left(2y-1\right)^2}\)

=> \(B=\frac{\left(2y-6+3\sqrt{\left(2y-1\right)^2}\right)}{4}\)

=> \(B=\frac{\left(2y-6+3\left(1-2y\right)\right)}{4}\)

=> \(B=\frac{\left(2y-6+3-6y\right)}{4}=\frac{-4y-3}{4}=-\left(y+\frac{3}{4}\right)\)

15 tháng 7 2019

\(\frac{y}{2}+\frac{3}{4}\sqrt{1-4y+4y^2}-\frac{3}{2}\)

\(=\frac{y}{2}+\frac{3}{4}\sqrt{\left(2y-1\right)^2}-\frac{3}{2}\)

\(=\frac{y}{2}+\frac{3}{4}\left|2y-1\right|-\frac{3}{2}\)(*)

Theo giả thiết \(y\le\frac{1}{2}\Leftrightarrow2y-1\le0\)

(*) \(=\frac{y}{2}+\frac{3}{4}\cdot\left(1-2y\right)-\frac{3}{2}\)

\(=\frac{y}{2}+\frac{3}{4}-\frac{3y}{2}-\frac{3}{2}\)

\(=\frac{-2y}{2}-\frac{3}{4}\)

\(=-y-\frac{3}{4}\)

15 tháng 7 2019

Cảm ơn bạn

11 tháng 12 2016

a) \(\frac{x-1}{x+1}-\frac{x+1}{x-1}+\frac{4}{x^2-1}\left(ĐK:x\ne\pm1\right)\)

\(=\frac{\left(x-1\right)^2-\left(x+1\right)^2+4}{\left(x-1\right)\left(x+1\right)}\)

\(\frac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\frac{-4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=-\frac{4}{x+1}\)

b) \(\frac{x^3y+xy^3}{x^4y}:\left(x^2+y^2\right)\left(ĐK:x,y\ne0\right)\)

\(=\frac{xy\left(x^2+y^2\right)}{x^4y}\cdot\frac{1}{x^2+y^2}\)

\(=\frac{1}{x^3}\)

Bài 1: 

a: \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4}{x+1}\)

b: \(=\dfrac{xy\left(x^2+y^2\right)}{x^4y}\cdot\dfrac{1}{x^2+y^2}=\dfrac{x}{x^4}=\dfrac{1}{x^3}\)

c: Đề thiếu rồi bạn

30 tháng 5 2017

a, Ta có : \(\frac{y}{x}.\sqrt{\frac{x^2}{y^4}}=\frac{y}{x}.\frac{x}{y^2}=\frac{1}{y}\)

b , Ta có : \(5xy\sqrt{\frac{x^2}{y^6}}=5xy\frac{x}{y^3}=\frac{5x^2}{y^2}\)

c, Ta có : \(0,2x^3y^3\sqrt{\frac{16}{x^4y^8}}=0,2x^3y^3.\frac{4}{x^2y^4}=\frac{0,8x}{y}\)

Bài 1: 

\(=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

3 tháng 7 2017

xin lỗi bn mik mới học lớp 6 thôi

18 tháng 9 2016

Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)

\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)

\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)

\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)

\(\Rightarrow T\ge1\)

Bài 2:

[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam