K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{x^4+10x^3+29x^2+10x^3+100x^2+290x-4x^2-40x-116+2224}{x^2+10x+29}\)

\(=x^2+10x-4+\dfrac{2224}{x^2+10x+29}\)

NV
26 tháng 7 2021

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)

\(\Leftrightarrow x\left(x-2\right)=0\) (do \(x^2+10>0;\forall x\))

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

26 tháng 7 2021

`x^4-2x^3+10x^2-20x=0`

`<=>x^3(x-2)+10x(x-2)=0`

`<=>(x^3+10x)(x-2)=0`

`<=>x(x^2+10)(x-2)=0`

`<=>`$\left[\begin{matrix} x=0\\ x^2+10=0\\x-2=0\end{matrix}\right.$

`<=>`$\left[\begin{matrix} x=0\\ x^2=-10 \ \rm(loại) \\x=2\end{matrix}\right.$

Vậy `S={0;2}`

18 tháng 3 2020

\(a.\frac{4x-3}{x-5}=\frac{29}{3}\\ \Leftrightarrow\frac{3\left(4x-3\right)}{3\left(x-5\right)}=\frac{29\left(x-5\right)}{3\left(x-5\right)}\\ \Leftrightarrow3\left(4x-3\right)=29\left(x-5\right)\\ \Leftrightarrow3\left(4x-3\right)-29\left(x-5\right)=0\\ \Leftrightarrow12x-9-29x+145=0\\ \Leftrightarrow-17x+136=0\\ \Leftrightarrow-17x=-136\\ \Leftrightarrow x=\frac{-136}{-17}=8\)

\(b.\frac{2x-1}{5-3x}=2\\ \Leftrightarrow\frac{2x-1}{5-3x}=\frac{4}{2}\\ \Leftrightarrow\frac{2\left(2x-1\right)}{2\left(5-3x\right)}=\frac{4\left(5-3x\right)}{2\left(5-3x\right)}\\ \Leftrightarrow2\left(2x-1\right)=4\left(5-3x\right)\\ \Leftrightarrow2\left(2x-1\right)-4\left(5-3x\right)=0\\ \Leftrightarrow4x-2-20+12x=0\\ \Leftrightarrow16x-22=0\\ \Leftrightarrow16x=22\\ \Leftrightarrow x=\frac{22}{16}=\frac{11}{8}\)

\(c.\frac{4x-5}{x-1}=\frac{2+x}{x-1}\\ \Leftrightarrow4x-5=2+x\\ \Leftrightarrow4x-5-2-x=0\\ \Leftrightarrow3x-7=0\\ \Leftrightarrow3x=7\\ \Leftrightarrow x=\frac{7}{3}\)

18 tháng 3 2020

\(d.\frac{7}{x+2}=\frac{3}{x-5}\\ \Leftrightarrow\frac{7\left(x-5\right)}{\left(x+2\right)\left(x-5\right)}=\frac{3\left(x+2\right)}{\left(x+2\right)\left(x-5\right)}\\ \Leftrightarrow7\left(x-5\right)=3\left(x+2\right)\\ \Leftrightarrow7\left(x-5\right)-3\left(x+2\right)=0\\ \Leftrightarrow7x-35-3x-6=0\\ \Leftrightarrow4x-41=0\\ \Leftrightarrow4x=41\\ \Leftrightarrow x=\frac{41}{4}\)

\(e.\frac{2x+5}{2x}-\frac{x}{x+5}=0\\ \Leftrightarrow\frac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\frac{x.2x}{2x\left(x+5\right)}=0\\ \Leftrightarrow\left(2x+5\right)\left(x+5\right)-2x^2=0\\ \Leftrightarrow2x^2+10x+5x+25-2x^2=0\\ \Leftrightarrow15x+25=0\\ \Leftrightarrow15x=-25\\ \Leftrightarrow x=\frac{-25}{15}=\frac{-5}{3}\)

\(f.\frac{12x+1}{11x-4}+\frac{10x-4}{9}=\frac{20x+17}{18}\\\Leftrightarrow\frac{18\left(12x+1\right)}{18\left(11x-4\right)}+\frac{\left(10x-4\right).2\left(11x-4\right)}{9.2\left(11x-4\right)}=\frac{\left(20x+17\right)\left(11x-4\right)}{18\left(11x-4\right)}\\ \Leftrightarrow18\left(12x+1\right)+\left(10x-4\right).2\left(11x-4\right)=\left(20x+17\right)\left(11x-4\right)\\ \Leftrightarrow220x^2+48x+50=220x^2+107x-68\\ \Leftrightarrow48x+50=107x-68\\ \Leftrightarrow48x-107x=-68-50\\ \Leftrightarrow59x=-118\\ \Leftrightarrow x=-2\)

22 tháng 7 2018

         \(x^2-5x-4\left(x-5\right)=0\)

\(\Leftrightarrow\)\(x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\)\(\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=4\end{cases}}\)

Vậy....

\(2x\left(x+6\right)=7x+42\)

\(\Leftrightarrow\)\(2x\left(x+6\right)-7x-42=0\)

\(\Leftrightarrow\)\(2x\left(x+6\right)-7\left(x+6\right)=0\)

\(\Leftrightarrow\)\(\left(x+6\right)\left(2x-7\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+6=0\\2x-7=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\\x=\frac{7}{2}\end{cases}}\)

Vậy......

\(x^3-5x^2+x-5=0\)

\(\Leftrightarrow\)\(x^2\left(x-5\right)+\left(x-5\right)=0\)

\(\Leftrightarrow\)\(\left(x-5\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\)\(x-5=0\)

\(\Leftrightarrow\)\(x=5\)

\(x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow\)\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x\left(x-2\right)\left(x^2+10\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy...

a: \(\Leftrightarrow\left(x+12-3x\right)\left(x+12+3x\right)=0\)

=>(-2x+12)(4x+12)=0

=>x=-3 hoặc x=6

b: \(\Leftrightarrow20x^3-15x^2+45x-45=0\)

=>\(x\simeq0.93\)

d: =>-4x+28+11x=-x+3x+15

=>7x+28=2x+15

=>5x=-13

=>x=-13/5

e: \(\Leftrightarrow4x^3-12x+x=4x^3-3x+5\)

=>-9x=-3x+5

=>-6x=5

=>x=-5/6

27 tháng 8 2016

bạn dùng hệ số bất định 

(x2+ax+b)(x2+cx+d)=x4+cx3+dx2+ax3+acx2+adx+bx2+bcx+bd

                               =x4+x3(a+c)+x2(b+ac+d)+x(ad+bc)+bd

=>a+c=-1

=>b+ac+d=-10               =>a=2;b=-2;c=-3;d=-2

=>ad+bc=20

=>bd=4

vây x4-x3-10x2+20x+4=(x2+2x-2)(x2-3x-2)=0

=> x2+2x-2=0

=> x2-3x-2=0 bạn tự giải nhé

 

27 tháng 8 2016

\(\left(x^2+\text{ax}+b\right)\left(x^2+cx+d\right)=x^4+cx^3+dx^2+\text{ax}^3+acx^2+adx+bx^2+bcx+bd\\ =>a+c=1\\ =>b+ac+d=-10\)

\(=>ad+bc=20\\ =>a=2;b=-2;c=-3;d=-2\\ =>bd=4\\ \)

Vậy \(x^4-x^3-10x^2+20x+4=\left(x^2+2x-2\right)\left(x^2-3x-2\right)=0\\ =>x^2+2x-2=0\\ =>x^2-3x-2=0\)

\(=>x^2-x-2x-2=0\\ =>x\left(x-1\right)-2\left(x-1\right)=0\\ =>\left(x-1\right)\left(x-2\right)=0\)

tới đây chắc dễ dàng 

9 tháng 8 2020

1) \(=\left(2z+3\right)\left(4z^2-6z+9\right)\)

2) \(=\left(\frac{3x^2}{5}-\frac{1}{2}\right)\left(\frac{3x^2}{5}+\frac{1}{2}\right)\)

3) \(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)

4) \(=\left(2x+1\right)^2\)

5) \(=\left(x-10\right)^2\)

6) \(=\left(y^2-7\right)^2\)

7) \(=\left(5x-4y\right)\left(25x^2+20xy+16y^2\right)\)

9 tháng 8 2020

Cảm ơn bạn nhiều nha 😁😁😁😁

a, \(\left(x+2\right)^3-x\left(x^2+6x-3\right)=0\Leftrightarrow x^3+4x^2+4x+2x^2+8x+8-x^3-6x^2+3x=0\)

\(\Leftrightarrow15x+8=0\Leftrightarrow x=-\frac{8}{15}\)

b, \(\left(x+4\right)^3-x\left(x+6\right)^2=7\Leftrightarrow12x+64=0\Leftrightarrow x=-\frac{19}{4}\)làm tắt:P 

Tự làm nốt nhé 

\(x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^3+10x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x\left(x^2+10\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)

21 tháng 7 2016

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x=0\end{cases}}\)(vì \(x^2+10\ge0\) với mọi x)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)