Tìm GTNN của A= (2010x+2680)/(x^2+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\frac{2010x+2680}{x^2+1}\)
\(=\frac{-335x^2-335+335x^2+2010x+3015}{x^2+1}\)
\(=-335+\frac{335\left(x+3\right)^2}{x^2+1}\ge-335\)
Dấu : \("="\)xảy ra khi và chỉ khi :
\(\frac{335\left(x+3\right)^2}{x^2+1}=0\)
\(\Leftrightarrow335\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)^2=0\)
\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy GTNN của \(A\)là : \(-335\Leftrightarrow x=-3\)
\(A=\frac{2010x+2680}{x^2+1}\)
\(\Leftrightarrow Ax^2+A=2010x+2680\)
\(\Leftrightarrow Ax^2-2010x+A-2680=0\)
*Nếu A = 0 thì x = -4/3
*Nếu A khác 0
Pt có nghiệm khi \(\Delta'\ge0\)
\(\Leftrightarrow1010025-A^2+2680A\ge0\)
\(\Leftrightarrow-335\le A\le3015\)
ta có: x2 >= 0 (với mọi x)
=> x2 + 1 = 1(với mọi x)
=> \(\frac{2010x+2680}{x^2+1}\) < = 2010x + 2680 (với mọi x)
hay A < = 2010 + 2680
do đó: GTNN của A là 2010+2680 khi:
x2 = 0 = 02
=> x = 0
vậy GTNN của A là 2010 + 2680 khi x = 0
\(A=\frac{2010x+2690}{x^2+1}=-335+\frac{335\left(x+3\right)^2}{x^2+1}\ge-335\)
Vậy giá trị nỏ nhất của A là : -335 khi x= -3
Chúc bạn học tốt !!!
Ta có:
\(A=\frac{2010x+2680}{x^2+1}=\frac{335x^2+2010x+3015-335x^2-335}{x^2+1}=\frac{335\left(x^2+6x+9\right)-335\left(x^2+1\right)}{x^2+1}=\frac{335\left(x+3\right)^2}{x^2+1}-335\ge-335\) với mọi \(x\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(x+3\right)^2=0\)
\(\Leftrightarrow\) \(x+3=0\)
\(\Leftrightarrow\) \(x=-3\)
Vậy, \(A_{min}=-335\) \(\Leftrightarrow\) \(x=-3\)