cho tam giác ABC vuông cân tại a.M nằm trong tam giác ABC sao cho góc AMC bằng 135 do
cm MB2=MC2+2MA2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC vuông cân tại a.M nằm trong tam giác ABC sao cho góc AMC bằng 135 do
cm MB2=MC2+2MA2
Vẽ tam giác MAD vuông cân tại A ( D và M nằm khác phía đối với AC), nối D với C
Bài làm
ta có: tam giác MAD vuông cân tại A
=> MA = AD ( tính chất tam giác vuông cân) => MA2 = AD2
góc AMD = góc ADM = 45 độ
mà \(\widehat{AMD}+\widehat{DMC}=\widehat{AMC}\)
thay số: 45 độ + góc DMC = 135 độ
góc DMC = 135 độ - 45 độ
góc DMC = 90 độ
\(\Rightarrow DM\perp MC⋮M\) ( định lí vuông góc)
Xét tam giác MAD vuông cân tại A
có: \(MA^2+AD^2=DM^2\left(py-ta-go\right)\)
\(\Rightarrow MA^2+MA^2=DM^2\)
2.MA2 = DM2
Xét tam giác DCM vuông tại M
có: \(DM^2+MC^2=CD^2\left(py-ta-go\right)\)
=> 2.MA2 + MC = CD2
\(\Rightarrow MA^2=\frac{CD^2-MC^2}{2}\) (1)
ta có: \(\widehat{BAM}+\widehat{MAC}=90^0\left(=\widehat{BAC}=90^0\right)\)
và \(\widehat{MAC}+\widehat{CAD}=90^0\left(=\widehat{MAD}=90^0\right)\)
\(\Rightarrow\widehat{BAM}+\widehat{MAC}=\widehat{MAC}+\widehat{CAD}\left(=90^0\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CAD}\)
Xét tam giác ABM và tam giác ACD
có: AB = AC (gt)
góc BAM = góc CAD (cmt)
AM = AD ( tam giác MAD vuông cân tại A)
\(\Rightarrow\Delta ABM=\Delta ACD\left(c-g-c\right)\)
=> MB = CD ( 2 cạnh tương ứng)
=> MB2 = CD2 (2)
Từ (1);(2) \(\Rightarrow MA^2=\frac{MB^2-MC^2}{2}\)