cho 1/a+1/b+1/c=1 và a*b+b*c+a*c=1 Tính P=1/(1+a+a*b)+1/(1+b+b*c)+1/(1+c+c*a). Các bạn jup mình vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
=>S+3=\(\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)
=>S+3=\(\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
=>S+3=(a+b+c).\(\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
Thay a + b + c = 2011 và 1/(a+b) + 1/(b+c) + 1/(c+a) = 1/2010 vào S ta đc:
S+3=2011.1/2010
=>S=2011/2010-3
=>S=\(\frac{-4019}{2010}\)
Vậy S=-4019/2010 với a + b + c = 2011 và 1/(a+b) + 1/(b+c) + 1/(c+a) = 1/2010.
ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\Rightarrow c\left(a+b\right)=-ab\Rightarrow a+b=-\frac{ab}{c}\)
CMTT:
\(a+c=-\frac{ac}{b}\)
\(b+c=-\frac{bc}{a}\)
Thay vào biểu thức \(A=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
\(\Rightarrow A=\frac{\left(-\frac{ab}{c}.-\frac{bc}{a}.-\frac{ac}{b}\right)}{abc}=-\frac{a^2b^2c^2}{a^2b^2c^2}=-1\)
T I C K ủng hộ nha mình cảm ơn
___________CHÚC BẠN HỌC TỐT NHA _____________________
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)
\(\Rightarrow\left(ab+ac+bc\right)\left(a+b+c\right)=abc\)
\(\Rightarrow a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc=âbc\)
\(\Rightarrow\left(a^2b+ab^2\right)+\left(ac^2+bc^2\right)+\left(a^2c+2abc+b^2c\right)=0\)
\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2=0\)
\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+\left(ac+bc\right)\left(a+b\right)=0\)
\(\Rightarrow\left(a+b\right)\left(ab+c^2+ac+bc\right)=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a=-b\\\frac{b=-c}{a=-c}\end{cases}}\)
Từ đó: P = 0.
Mình giải hơi tắt. Mong bạn hiểu bài.
Chúc bạn học tốt.
Cần thêm điều kiện a,b,c khác 0
Từ giả thiết ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left[\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right]=0\)
\(\Leftrightarrow\left(a+b\right).\frac{ac+bc+c^2+ab}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Suy ra a + b = 0 hoặc b + c = 0 hoặc c + a = 0
Mặt khác, 23 , 5 , 2017 là các số mũ lẻ nên \(a^{23}+b^{23}=\left(a+b\right).A=0.A=0\)( Vì a + b = 0 - chứng minh trên)
Suy ra P = 0
Tương tự với các trường hợp còn lại , ta cũng có kết quả tương tự.
???????????????????câu này khó quá????????????????????????????
Ta có:
\(\dfrac{1}{a}\) + \(\dfrac{1}{b}\) + \(\dfrac{1}{c}\) = \(\dfrac{bc+ac+ab}{abc}\)= bc + ac + ab (Vì abc = 1)
⇔ a + b + c > bc + ac + ab
⇔ a + b + c - bc - ac - ab > 0
⇔ a + b + c - bc - ac - ab + abc - 1 > 0
⇔ (a - ab) + (b - 1) + (c - bc) + (abc - ac) > 0
⇔ -a(b - 1) + (b - 1) + -c(b - 1) + ac(b - 1) > 0
⇔ (b - 1)(-a + 1 - c +ac) > 0
⇔ (b - 1)[(-a +1) + (ac - c)] > 0
⇔ (b - 1)[-(a - 1) + c(a - 1)] > 0
⇔ (b - 1)(a - 1)(c-1) > 0
Áp dụng Bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)ta có:
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{9}{1+a+1+b+1+c}\)\(=\frac{9}{4}\ne2\)
???