K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2021

THONG CẢM EM LÀM THỬ EM CÓ LỚP 7

15 tháng 9 2021

a. Xét tam giác ABC vuông tại A, theo định lý pytago ta có:

BC²=AB²+AC²

⇒AB²=BC²-AC²

⇒AB²=25²-20²

⇒AB²=225

⇒AB=15 cm

Xét tam giác ABC vuông tại A, có đường cao AH:

AB²=BH.BC

⇒BH=AB²:BC

⇒BH=15²:25

⇒BH=9 cm

CMTT, ta có:

AC²=HC.BC

⇒HC=AC²:BC

⇒HC=20²:25

⇒HC=16 cm

Xét tam giác ABC vuông tại A, có đường cao AH:

AH²=BH.HC

⇒AH²=9.16

⇒AH²=144

⇒AH = 12 cm

Vajay AH =12cm; HC =16 cm; HB =9cm; AB =15cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{BH}{CH}\)

\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{9}{49}\)

\(\Leftrightarrow BH=\dfrac{9}{49}CH\)

Ta có: \(BH\cdot CH=AH^2\)

\(\Leftrightarrow CH^2\cdot\dfrac{9}{49}=42^2=1764\)

\(\Leftrightarrow CH^2=9604\)

\(\Leftrightarrow CH=98\left(cm\right)\)

\(\Leftrightarrow BH=18\left(cm\right)\)

30 tháng 6 2021

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\dfrac{AB}{3}=\dfrac{AC}{4}=\dfrac{\sqrt{AB^2+AC^2}}{\sqrt{3^2+4^2}}=\dfrac{BC}{5}=k\left(k>0\right)\Rightarrow AB=3k,AC=4k,BC=5k\)

Theo hệ thức lượng giác vào tam giác vuông ABC đường cao AH có:

\(AB\cdot AC=BC\cdot AH\Rightarrow3k\cdot4k=5k\cdot12\Rightarrow k=5\) \(\Rightarrow AB=15cm;AC=20cm;BC=25cm\)

\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right);HC=BC-HB=25-9=16\left(cm\right)\)

30 tháng 6 2021

ta có : AB/AC=3/4=tan góc C

=> góc C=37 độ

Xét tam giác AHC vuông tại H ta có

tan góc ACH=AH/CH

=>CH=16cm

Mặt khác ta có : AH^2=HB.HC

=>HB=9cm

Ta có: AB:AC=3:4

nên \(AB=\dfrac{3}{4}AC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{\left(\dfrac{3}{4}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{6^2}=\dfrac{1}{36}\)

\(\Leftrightarrow\dfrac{1}{\dfrac{9}{16}AC^2}+\dfrac{\dfrac{9}{16}}{\dfrac{9}{16}AC^2}=\dfrac{1}{36}\)

\(\Leftrightarrow AC^2\cdot\dfrac{9}{16}=36\cdot\dfrac{25}{16}=\dfrac{225}{4}\)

\(\Leftrightarrow AC^2=100\)

hay AC=10(cm)

Ta có: \(AB=\dfrac{3}{4}AC\)

nên \(AB=\dfrac{3}{4}\cdot10=7.5\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=7.5^2-6^2=4.5^2\)

hay BH=4,5(cm)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow HC^2=10^2-6^2=64\)

hay HC=8(cm)

1 tháng 2 2018

Hỏi đáp Toán

3 tháng 8 2016

cảm ơn nhé

1 tháng 2 2018

Hỏi đáp Toán