cho hình hành ABCD có tâm đối xứng là O. Gọi E là điểm thuộc cạnh AB, F là giao điểm của EO và CD,vẽ FH//AC (H thuộc AD),vẽ EG//AC (G thuộc BC).Chứng minh rằng : H đối xứng với G qua O
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của BC
Do đó: EF là đường trung bình của ΔABC
Suy ra: FE//AC và FE=AC/2(1)
Xét ΔCDA có
G là trung điểm của CD
H là trung điểm của DA
Do đó: GH là đường trung bình của ΔCDA
Suy ra: GH//CA và GH=CA/2(2)
TỪ (1) và (2) suy ra EF//GH và EF=GH
hay EFGH là hinh bình hành
a: Xét ΔABD có
E là trung điểm của AB
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
F là trung điểm của BC
G là trung điểm của DC
Do đó: FG là đường trung bình của ΔBCD
Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra EH//GF và EH=GF
hay EHGF là hình bình hành