Cho N = 1 - 1/2 + 1/3 - 1/4 +....+ 1/2015 - 1/2016 và
K = 1/1009 + 1/1010 + 1/1011 +...+ 1/2016
Chứng minh N = K
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}+\dfrac{1}{2017}\)
\(M=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}+\dfrac{1}{2017}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)\(M=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)\(M=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2008}\right)\)
\(M=\dfrac{1}{2009}+\dfrac{1}{2010}+...+\dfrac{1}{2016}+\dfrac{1}{2017}=N\)
Vậy \(\left(M-N\right)^{2017}=0\)
Xét số chia: 1-\(\frac{1}{2}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) +...+\(\frac{1}{2015}\) - \(\frac{1}{2016}\)
= (1+\(\frac{1}{2}\) + \(\frac{1}{3}\) + \(\frac{1}{4}\) +...+\(\frac{1}{2015}\) + \(\frac{1}{2016}\)) - 2.(\(\frac{1}{2}\) + \(\frac{1}{4}\) + ... + \(\frac{1}{2016}\))
= (1+\(\frac{1}{2}\) + \(\frac{1}{3}\) + \(\frac{1}{4}\) +...+\(\frac{1}{2015}\) + \(\frac{1}{2016}\)) - (1+\(\frac{1}{2}\) + \(\frac{1}{3}\) + \(\frac{1}{4}\) +...+\(\frac{1}{1007}\) + \(\frac{1}{1008}\))
=\(\frac{1}{1009}\) + \(\frac{1}{1010}\) + ... + \(\frac{1}{2015}\)+ \(\frac{1}{2016}\) => A=1
Sửa đề: Cho \(V=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\)và \(Y=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\). Tính \(\frac{V}{Y}\)
\(V=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2016}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2016}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)
=> \(\frac{V}{Y}=\frac{\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}}{\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}}=1\)
V = \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2015.2016}\)
V = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2015}-\frac{1}{2016}\)
V = \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
V = \(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2015}+\frac{1}{2016}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
V = \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1008}\right)\)
V = \(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)
Vậy V : Y = \(\frac{\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}}{\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2016}}\)
( Mình nghĩ Y = 1/1009 + 1/1010 + ... + 1/2016 / Nếu Y như mình nói thì V : Y = 1 )
\(N=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(N=\left(1+\frac{1}{3}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+...+\frac{1}{2016}\right)\)
\(N=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1008}\right)\)
\(N=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}=K\)