1/2x3 + 1/3x4 + 1/4x5 +...+ 1/99x100
CHÚC CÁC BẠN LÀM TỐT
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+............+1/9+1/10
=1-1/10
=10/10-1/10
=9/10
Bài làm:
\(\frac{1}{1\times2}+\frac{1}{2\times3}\)\(+\frac{1}{3\times4}+\frac{1}{4\times5}\)\(+...\frac{1}{9\times10}\)
\(=\frac{1}{1}-\frac{1}{2}\)\(+\frac{1}{2}-\frac{1}{3}\)\(+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}\)\(-\frac{1}{5}\)\(+...\frac{1}{9}-\frac{1}{10}\)
\(=\)\(\frac{1}{1}-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{6}-\dfrac{1}{7}=\dfrac{1}{2}-\dfrac{1}{7}=\dfrac{5}{14}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{20}-\dfrac{1}{21}=\dfrac{21-2}{42}=\dfrac{19}{42}\)
Lời giải:
Gọi biểu thức số 1 là A và số 2 là B
\(A=\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+\frac{6-5}{5\times 6}+\frac{7-6}{6\times 7}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=\frac{1}{2}-\frac{1}{7}=\frac{5}{14}\)
B tương tự A:
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{20}-\frac{1}{21}\)
\(=\frac{1}{2}-\frac{1}{21}=\frac{19}{42}\)
Sử dụng công thứ \(\frac{1}{n.\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Ta có \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)