Tìm x biết: \(\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\dfrac{-64}{125}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho mk sửa lại
tacó:
\(\dfrac{-64}{125}=\left(\dfrac{-4}{5}\right)^3\)
suy ra\(\dfrac{2}{3}-\dfrac{3}{5}x=\dfrac{-4}{5}\)
\(\dfrac{3}{5}x=\dfrac{2}{3}-\dfrac{-4}{5}\)
\(\dfrac{3}{5}x=\dfrac{22}{15}\)
\(x=\dfrac{22}{15}:\dfrac{3}{5}\)
\(x=\dfrac{22}{9}\)
ta có:
\(\dfrac{-64}{125}=\left(\dfrac{-16}{5}\right)^3\)
suy ra \(\dfrac{2}{3}-\dfrac{3}{5}x=\dfrac{-16}{5}\)
\(\dfrac{3}{5}x=\dfrac{2}{3}-\dfrac{-16}{5}\)
\(\dfrac{3}{5}x=\dfrac{58}{15}\)
\(x=\dfrac{58}{15}:\dfrac{3}{5}\)
\(x=\dfrac{58}{9}\)
\(a,\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=-\dfrac{64}{125}\)
\(\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\left(\dfrac{-4}{5}\right)^3\)
\(\dfrac{3}{5}-\dfrac{2}{3}x=-\dfrac{4}{5}\)
\(-\dfrac{2}{3}x=-\dfrac{4}{5}-\dfrac{3}{5}\)
\(-\dfrac{2}{3}x=-\dfrac{7}{5}\)
\(x=\dfrac{21}{10}\)
\(b,\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
\(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{4}{9}\right)^3\)
\(x-\dfrac{2}{9}=\dfrac{4}{9}\)
\(x=\dfrac{2}{3}\)
\(c,\left(0,4x-1,3\right)^2=5,29\)
\(\left(0,4x-1,3\right)^2=2,3^2=\left(-2,3\right)^2\)
TH1: \(0,4x-1,3=2,3\)
\(0,4x=3,6\)
\(x=9\)
TH2: \(0,4x-1,3=-2,3\)
\(0,4x=-1\)
\(x=-\dfrac{5}{2}\)
=.= hok tốt!!
a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)
Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)
b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)
Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)
a) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\)
Th1 : \(x-\dfrac{1}{2}=0\)
\(x=0+\dfrac{1}{2}\)
\(x=\dfrac{1}{2}\)
Th2 : \(-3-\dfrac{x}{2}=0\)
\(\dfrac{x}{2}=-3\)
\(x=\left(-3\right)\cdot2\)
\(x=-6\)
Vậy \(x\) = \(\left(\dfrac{1}{2};-6\right)\)
b) \(x-\dfrac{1}{8}=\dfrac{5}{8}\)
\(x=\dfrac{5}{8}+\dfrac{1}{8}\)
\(x=\dfrac{3}{4}\)
c) \(-\dfrac{1}{2}-\left(\dfrac{3}{2}+x\right)=-2\)
\(\dfrac{3}{2}+x=-\dfrac{1}{2}-\left(-2\right)\)
\(\dfrac{3}{2}+x=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}-\dfrac{3}{2}\)
\(x=0\)
d) \(x+\dfrac{1}{3}=\dfrac{-12}{5}\cdot\dfrac{10}{6}\)
\(x+\dfrac{1}{3}=-4\)
\(x=-4-\dfrac{1}{3}\)
\(x=-\dfrac{13}{3}\)
Ta có: \(\dfrac{\left(x+3\right)^5}{\left(x+3\right)^2}=\dfrac{64}{27}\)
\(\Leftrightarrow\left(x+3\right)^3=\left(\dfrac{8}{3}\right)^3\)
\(\Leftrightarrow x+3=\dfrac{8}{3}\)
\(\Leftrightarrow x=\dfrac{8}{3}-3=\dfrac{8}{3}-\dfrac{9}{3}\)
hay \(x=-\dfrac{1}{3}\)
Vậy: \(x=-\dfrac{1}{3}\)
\(\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\dfrac{-64}{125}\)
\(\rightarrow\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\left(\dfrac{-4}{5}\right)^3\)
\(\rightarrow\dfrac{3}{5}-\dfrac{2}{3}x=\dfrac{-4}{5}\)
\(\rightarrow x=\dfrac{21}{10}\)