Chứng tỏ rằng :
5200+5199+5198chia hết cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 6( x + 7y ) = 6x + 42y
Vì 6x + 11y - ( 6x + 42y ) = 6x - 6x + 11y - 42y = -31y mà -31 Chia hết cho 31 nên 6x +11Y - 6( x + 7y) chia hết cho 31 nên 6x + 11Y - ( x + 7y) chia hết cho 31. Vậy mà 6x + 11y chia hết cho 31 nên để 6x + 11y - (x + 7y) chia hết cho 31 thì x + 7y chia hết cho 31(đpcm)
6x+11y+31y chia het cho 31
6x+42y chia het cho 31
6(x+7y) chia het cho 31
vi 6 va 31 nguyen to cung nhau
x+7y chia het cho 31
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y cũng phải chia hết cho 31 (ĐPCM)
a:
6x+11y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=>x+7y chia hết cho 31
b: x+7y chia hết cho 31
=>6x+42y chia hét cho 31
=>6x+11y chia hết cho 31
Ta có 22015=(25)403=32403
Ta có 32 = 1 ( mod 31)
=>32403 = 1( mod 31)
=> 32403 chia 31 dư 1 hay 22015 chia 31 dư 1
Vậy 22015-1 chia hết cho 31( đpcm)
Ta có : 31.(x+2y) = 31x+62y = 5.(6x+11y) + (x+7y)
Do 6x+11y chia hết 31 , suy ra 5.(6x+11y) chia hết 31
suy ra x +7y chia hết 31 (đpcm)
nha
có : 6(x + 7y) = 6x + 42y = 6x + 11y + 31y
6x + 11y chia hết cho 31; 31y chia hết cho 31
=> 6(x + 7y) chia hết cho 31
=> x + 7y chia hết cho 31
làm ngược lại
ta sẽ có:
5200+5199+5198=5+(200+199+198)=5697
Suy ra ta có công thức(trong sách giáo khoa) nên 5697 chia hết cho 31
chúc bạn học tốt
thank you,lần sau có câu gì thì cứ hỏi mình nha!chúc bạn một ngày tốt lành