Tìm x:
-4( x - 1 )^2 + ( 2x - 1 )( 2x + 1 ) = -3
Giúp tớ với ạ, đúng tick liền
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)
\(\Leftrightarrow x^2-4x+4-\left(x^2+6x+9\right)-4x-4=5\)
\(\Leftrightarrow x^2-4x+4-x^2-6x-9-4x-4=5\)
\(\Leftrightarrow-14x=14\)
\(\Leftrightarrow x=-1\)
b) \(\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)
\(\Leftrightarrow4x^2-9-x^2+2x-1-3x^2+15x=-44\)
\(\Leftrightarrow17x=-34\Rightarrow x=-2\)
Bài 1:
$x-1=|2x-1|\geq 0\Rightarrow x\geq 1$
$\Rightarrow 2x-1>0\Rightarrow |2x-1|=2x-1$. Khi đó:
$2x-1=x-1\Leftrightarrow x=0$ (không thỏa mãn vì $x\geq 1$)
Vậy không tồn tại $x$ thỏa đề.
Bài 2:
Nếu $x\geq \frac{1}{3}$ thì:
$3x-1=2x+3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{3}$ thì:
$1-3x=2x+3$
$\Leftrightarrow -2=5x\Leftrightarrow x=\frac{-2}{5}$ (tm)
Vậy......
c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)
Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)
Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)
\(\left(x+3\right)^2-\left(4-x\right)\left(4+x\right)=10\)
<=> \(x^2+6x+9-\left(16-x^2\right)=10\)
<=> \(2x^2+6x-17=0\)
<=> \(x^2+3x-\frac{17}{2}=0\)
<=> \(\left(x+\frac{3}{2}\right)^2-\frac{43}{4}=0\)
<=> \(\left(x+\frac{3}{2}+\frac{\sqrt{43}}{2}\right)\left(x+\frac{3}{2}-\frac{\sqrt{43}}{2}\right)=0\)
<=> \(\orbr{\begin{cases}x+\frac{3}{2}+\frac{\sqrt{43}}{2}=0\\x+\frac{3}{2}-\frac{\sqrt{43}}{2}=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{-3-\sqrt{43}}{2}\\x=\frac{\sqrt{43}-3}{2}\end{cases}}\)
Vậy...
\((x+3)^2-(4-x)(4+x)=10\)
\(\Rightarrow x^2+6x+9-(16+4x-4x+x^2)=10\)
\(\Rightarrow x^2+6x+9-16-x^2=10\)
\(\Rightarrow6x+9=26\)
\(\Rightarrow6x=17\)
\(\Rightarrow x\in\varnothing\)
a, 3x - 2x < 6 <=> x < 6
b, đk : x khác -1 ; 3
=> x^2 - 3x = x^2 - x - 2
<=> -2x = -2 <=> x = 1 (tm)
DỂ QUÁ!!!!!!!!!!!!!!!!
TUI HK BIẾT LÀM
\(-4\left(x-1\right)^2+\left(2x-1\right)\left(2x+1\right)=-3\) \(3\)
<=> \(-4\left(x^2-2x+1\right)+4x^2-1=-3\)
<=> \(-4x^2+8x-4+4x^2-1=-3\)
<=> \(8x-5=-3\)
<=> \(8x=2\)
<=> \(x=\frac{1}{4}\)