K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

Hình bạn tự vẽ nhé

Trước tiên từ C kẻ đường vuông góc với đường thẳng d và vắt AB tại A'

Từ đó chứng minh được: A'M=MC và A'A=AC

Kẻ M với B

Theo bài ra, ta có trong tam giác MBA' có:

MC+MB>BA' (1)

Mà BA'=BA+AA' = BA + AC (2)

Từ (1) và (2) suy ra BA + AC < BM + MC
Chúc bạn học tốt
Bình chọn cho mình nhé

1 tháng 8 2018

Trên tia đối của tia AC lấy điểm D sao cho AB = AD

=> AB + AC = AD + AC

Tam giác AMD = tam giác AMB ( c.g.c )

=> MD = MB ( 2 cạnh tương ứng )

=> MB + MC = MD + MC 

Xét tam giác MCD theo bđt tam giác ta có

MD + MC > CD

=> MB + MC > AB + AC   ( đpcm )

Xét (O) có

ΔCDM nội tiếp

CM là đường kính

DO đó: ΔCDM vuông tại D

Xét tứ giác ABCD có 

\(\widehat{CDB}=\widehat{CAB}=90^0\)

Do đó: ABCD là tứ giác nội tiếp

b: \(\widehat{BCA}=\widehat{ADB}\)

mà \(\widehat{ADB}=\widehat{KCA}\)

nên \(\widehat{BCA}=\widehat{KCA}\)

hay CA là tia phân giác của góc KCB

23 tháng 4 2022

Xét (O) có

ΔCDM nội tiếp

CM là đường kính

DO đó: ΔCDM vuông tại D

Xét tứ giác ABCD có 

ˆCDB=ˆCAB=900CDB^=CAB^=900

Do đó: ABCD là tứ giác nội tiếp

b: ˆBCA=ˆADBBCA^=ADB^

mà ˆADB=ˆKCAADB^=KCA^

nên ˆBCA=ˆKCABCA^=KCA^

hay CA là tia phân giác của góc KCB

27 tháng 6 2021

a) ΔABDΔABD cân tại A => BADˆ=BDAˆBAD^=BDA^ (t/c tam giác cân)

Lại có: BADˆ+DAEˆ=BACˆ=90oBAD^+DAE^=BAC^=90o

BDAˆ+ADEˆ=BDEˆ=90oBDA^+ADE^=BDE^=90o

Do đó, DAEˆ=ADEˆDAE^=ADE^

=> ΔADEΔADE cân tại E (dấu hiệu nhận biết tam giác cân)

=> AE = ED (t/c tam giác cân) (đpcm)

b) Có: AH // ED (cùng ⊥BC⊥BC)
=> HADˆ=ADEˆHAD^=ADE^ (so le trong)

= DAE (câu a)

=> AD là phân giác HACˆ(đpcm)

27 tháng 6 2021

undefined