K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

 đè chư a rõ

24 tháng 11 2017

A = 1 + 3 + 3^2 + 3^3 + ... + 3^100

A = ( 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 ) + ( 3^6 + 3^7 + 3^8 + 3^9 + 3^10 + 3^11 ) + ... +( 3^89 + 3^90 + 3^91 + 3^92 + 3^93 + 3^94 + 3^95) + ( 3^96 + 3^97 + 3^98 + 3^99 + 3^100 )

A = ( 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 ) + 3^6( 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 ) + ... + 3^89( 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 ) + ( 3^96 + 3^97 + 3^98 + 3^99 + 3^100 )

A = 364 + 3^6 . 364 + ... + 3^89 . 364 + ( 3^96 + 3^97 + 3^98 + 3^99 + 3^100 )

Chứng minh nốt phần còn lại là xong .

13 tháng 5 2017

Sửa lại:A.x=x2+x3+...+x101

=>A.x-A=(x2+x3+...+x101)-(x+x2+...+x100)

=>A(x-1)=x101-x

=>A=\(\dfrac{x^{101}-x}{x-1}\)

Thay x=\(\dfrac{1}{2}\)vào A ta có:

A=\(\dfrac{\left(\dfrac{1}{2}\right)^{101}-\dfrac{1}{2}}{\dfrac{1}{2}-1}=\dfrac{\left(\dfrac{1}{2}\right)^{101}-\dfrac{1}{2}}{-\dfrac{1}{2}}=1-\left(\dfrac{1}{2}\right)^{100}=\dfrac{2^{100}-1}{2^{100}}\)

13 tháng 5 2017

Ta có:A.x=x2+x3+...+x101

=>A.x-A=(x2+x3+...+x101)-(x+x2+...+x100)

=>A(x-1)=x101-x

=>A=\(\dfrac{x^{101}-x}{x-1}\)

Thay x=\(\dfrac{1}{2}\)

=>A=\(\dfrac{\left(\dfrac{1}{2}\right)^{101}-\dfrac{1}{2}}{\dfrac{1}{2}-1}=\dfrac{\left(\dfrac{1}{2}\right)^{101}-\dfrac{1}{2}}{-\dfrac{1}{2}}=1-\left(\dfrac{1}{2}\right)^{101}\)

7 tháng 6 2015

thinh chắc là tính đó mà!

19 tháng 5 2017

bn xem lại cái đề nhé, với a = b = c = 2 thì ko đúng đâu

1 tháng 4 2017

áp dụng BĐT bunhia... ta có 

\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\le3.3c^2=9c^2\)

\(\Rightarrow a+2b\le3c\)

áp dụng cosi ta có 

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

áp dụng BDT trên ta có \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+b+b}=\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(đpcm\right)\)

dấu = xảy ra khi a=b=c

14 tháng 3 2018

\(\left(a+b+c\right)^2\le\left(2b+c\right)^2\)

Xét hiệu: 

\(\left(2b+c\right)^2-9bc=4b^2-5bc+c^2=\left(b-c\right)\left(4b-c\right)\le0\)

Dễ thấy b - c < 0

\(c< a+b\le2b\)

=> 4b - c > 0

Q.E.D dấu "=" xảy ra khi a = b = c