K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2015

Mình mới lớp 6

nên ko giải được bài này

21 tháng 7 2017

Ta có :

\(A=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1\) có GTNN là - 1 tại x = - 2

\(A=\frac{4x^2+4-4x^2+4x-1}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\le4\) có GNLN là 4 tại x = 1/2

21 tháng 7 2017

đặt \(A=\frac{4x+3}{x^2+1}=a\)

<=>ax2+a=4x+3

<=>ax2-4x+a-3=0

\(\Rightarrow\Delta=16-4\left(a-3\right)a\ge0\)

\(\Leftrightarrow4a^2-12a-16\le0\)

\(\Leftrightarrow\left(2a-3\right)^2-25\le0\)

\(\Leftrightarrow\left(2a+2\right)\left(2a-8\right)\le0\)

\(\Leftrightarrow\hept{\begin{cases}2a+2\ge0\\2a-8\le0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ge-1\\a\le4\end{cases}}}\)

Vậy Min A=-1;Max A=4

31 tháng 1 2022

là \(4x+\dfrac{1}{x^2}+2x+2\)  hay là \(\dfrac{4x+1}{x^2+2x+2}\) cái neog:0

31 tháng 1 2022

cái phía sau nha bạn ơi 

31 tháng 3 2018

* Tìm GTNN : 

Ta có : 

\(D=\frac{4x-3}{x+1}=\frac{4x+4-7}{x+1}=\frac{4x+4}{x+1}-\frac{7}{x+1}=\frac{4\left(x+1\right)}{x+1}-\frac{7}{x+1}=4-\frac{7}{x+1}\)

Để D đạt GTNN thì \(\frac{7}{x+1}\) phải đạt GTLN hay \(x+1>0\) và đạt GTNN 

\(\Rightarrow\)\(x+1=1\)

\(\Rightarrow\)\(x=0\)

Suy ra : 

\(D=\frac{4x-3}{x+1}=\frac{4.0-3}{0+1}=\frac{0-3}{1}=\frac{-3}{1}=-3\)

Vậy \(D_{min}=-3\) khi \(x=0\)

Chúc bạn học tốt ~ 

31 tháng 3 2018

\(* Tìm GTNN :  Ta có :  \(D=\frac{4x-3}{x+1}=\frac{4x+4-7}{x+1}=\frac{4x+4}{x+1}-\frac{7}{x+1}=\frac{4\left(x+1\right)}{x+1}-\frac{7}{x+1}=4-\frac{7}{x+1}\) Để D đạt GTNN thì \(\frac{7}{x+1}\) phải đạt GTLN hay \(x+1>0\) và đạt GTNN  \(\Rightarrow\)\(x+1=1\) \(\Rightarrow\)\(x=0\) Suy ra :  \(D=\frac{4x-3}{x+1}=\frac{4.0-3}{0+1}=\frac{0-3}{1}=\frac{-3}{1}=-3\) Vậy \(D_{min}=-3\) khi \(x=0\) Chúc bạn học tốt ~ \)

7 tháng 4 2018

\(D=\frac{4x+3}{x^2+1}\)
\(\Leftrightarrow D.x^2+D-4x-3=0\)
\(\Leftrightarrow D.x^2-4x+\left(D-3\right)=0\)
\(\Delta'=4-D\left(D-3\right)=-D^2+3D+4\ge0\)
\(\Leftrightarrow-1\le D\le4\)
Vậy Dmax=4, Dmin=-1
 

6 tháng 12 2015

2) ĐKXĐ:  \(1\le x\le5\)

\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)

Xảy ra đẳng thức khi và chỉ khi x = 3

25 tháng 5 2019

Ta có : \(M=\frac{4x+1}{x^2+3}=\frac{\left(x^2+4x+4\right)-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)

Vậy GTNN của M là -1 \(\Leftrightarrow\)x = -2

\(M=\frac{4x+1}{x^2+3}=\frac{\frac{4}{3}\left(x^2+3\right)-\frac{4}{3}x^2+4x-3}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x-\frac{3}{2}\right)^2}{x^2+3}\le\frac{4}{3}\)

Vậy GTLN của M là \(\frac{4}{3}\)\(\Leftrightarrow\)x = \(\frac{3}{2}\)