Bài 1
a) ( x-1 ) ( x^2 + x+1 ) = x^3-1
b) x^4 - y^4 = ( x^3 + x^2y + xy^2 + y^3 ) ( x - y )
c) x ( 2x - 3 ) - 2x. ( x+1 ) chia hết cho 5 với mọi x thuộc z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2-26=0\)
\(\Leftrightarrow-13x-26=0\)
\(\Leftrightarrow-13\left(x+2\right)=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
b) \(\left(x-7\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\)
Bài 2:
a) \(\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)
b) \(\left(2x-1\right)\left(2x+1\right)\left(1-5x\right)\)
\(=\left(4x^2-1\right)\left(1-5x\right)\)
\(=4x^2-20x^3-1+5x\)
a, 2x-3 chia hết cho x+2
=>2x+4-7 chia hết cho x+2
=>2(x+2)-7 chia hết cho x+2
=>7 chia hết cho x+2
=>x+2 thuộc Ư(7)={1;-1;7;-7}
=>x thuộc {-1;-3;5;-9}
b, 6x+1 chia hết cho 5-4x
Vi 2(6x+1) chia hết cho 5-4x
3(5-4x )chia hết cho 5-4x
=>2(6x+1)+3(5-4x) chia hết cho 5-4x
=>12x+2+15-12x chia hết cho 5-4x
=>17 chia hết cho 5-4x
=>5-4x thuộc Ư(17)={1;-1;17;-17}
=>x thuộc {1;3/2;-3;11/2}
Vì x thuộc Z nên x thuộc {1;-3}
c, Đề pải là (x+3)(4-y)=7 chứ
=>x+3 và 4-y thuộc Ư(7)={1;-1;7;-7}
Ta có bảng:
x+3 | 1 | -1 | 7 | -7 |
4-y | 7 | -7 | 1 | -1 |
x | -2 | -4 | 4 | -10 |
y | 4 | -10 | -2 | -4 |
c, xy+2y+2x=1
<=>x(y+2)+2y+4=1+4
<=>x(y+2)+2(y+2)=5
<=>(x+2)(y+2)=5
=>x+2,y+2 thuộc Ư(5)={1;-1;5;-5}
Ta có bảng:
x+2 | 1 | -1 | 5 | -5 |
y+2 | 5 | -5 | 1 | -1 |
x | -1 | -3 | 3 | -7 |
y | 3 | -7 | -1 | -3 |
a, 2x - 3 chia hết cho x + 2
=> 2x + 4 - 7 chia hết cho x + 2
=> 2(x + 2) - 7 chia hết cho x + 2
=> 7 chia hết cho x+2
=>x+2 thuộc Ư(7)={1;-1;7;-7}
=>x thuộc {-1;-3;5;-9}
b, 6x+1 chia hết cho 5-4x
Vi 2(6x+1) chia hết cho 5-4x
3(5-4x )chia hết cho 5-4x
=>2(6x+1)+3(5-4x) chia hết cho 5-4x
=>12x+2+15-12x chia hết cho 5-4x
=>17 chia hết cho 5-4x
=>5-4x thuộc Ư(17)={1;-1;17;-17}
=>x thuộc {1;3/2;-3;11/2}
Vì x thuộc Z nên x thuộc {1;-3}
c, Đề pải là (x+3)(4-y)=7 chứ
=>x+3 và 4-y thuộc Ư(7)={1;-1;7;-7}
Ta có bảng:
x+3 | 1 | -1 | 7 | -7 |
4-y | 7 | -7 | 1 | -1 |
x | -2 | -4 | 4 | -10 |
y | 4 | -10 | -2 | -4 |
c, xy+2y+2x=1
<=>x(y+2)+2y+4=1+4
<=>x(y+2)+2(y+2)=5
<=>(x+2)(y+2)=5
=>x+2,y+2 thuộc Ư(5)={1;-1;5;-5}
Ta có bảng:
x+2 | 1 | -1 | 5 | -5 |
y+2 | 5 | -5 | 1 | -1 |
x | -1 | -3 | 3 | -7 |
y | 3 | -7 | -1 | -3 |
Bài 1:a) Ta có: \(1-3x⋮x-2\)
\(\Leftrightarrow-3x+1⋮x-2\)
\(\Leftrightarrow-3x+6-5⋮x-2\)
mà \(-3x+6⋮x-2\)
nên \(-5⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(-5\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{3;1;7;-3\right\}\)
Vậy: \(x\in\left\{3;1;7;-3\right\}\)
b) Ta có: \(3x+2⋮2x+1\)
\(\Leftrightarrow2\left(3x+2\right)⋮2x+1\)
\(\Leftrightarrow6x+4⋮2x+1\)
\(\Leftrightarrow6x+3+1⋮2x+1\)
mà \(6x+3⋮2x+1\)
nên \(1⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(1\right)\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2x\in\left\{0;-2\right\}\)
hay \(x\in\left\{0;-1\right\}\)
Vậy: \(x\in\left\{0;-1\right\}\)
Bài 1 :
a, Có : \(1-3x⋮x-2\)
\(\Rightarrow-3x+6-5⋮x-2\)
\(\Rightarrow-3\left(x-2\right)-5⋮x-2\)
- Thấy -3 ( x - 2 ) chia hết cho x - 2
\(\Rightarrow-5⋮x-2\)
- Để thỏa mãn yc đề bài thì : \(x-2\inƯ_{\left(-5\right)}\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{3;1;7;-3\right\}\)
Vậy ...
b, Có : \(3x+2⋮2x+1\)
\(\Leftrightarrow3x+1,5+0,5⋮2x+1\)
\(\Leftrightarrow1,5\left(2x+1\right)+0,5⋮2x+1\)
- Thấy 1,5 ( 2x +1 ) chia hết cho 2x+1
\(\Rightarrow1⋮2x+1\)
- Để thỏa mãn yc đề bài thì : \(2x+1\inƯ_{\left(1\right)}\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow x\in\left\{0;-1\right\}\)
Vậy ...
b: \(C=xy\left(x^3+2\right)-y\left(xy^3+2x\right)\)
\(=x^4y+2xy-xy^4-2xy\)
\(=xy\left(x^3-y^3\right)\)
\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)⋮x^2+xy+y^2\)
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
5. Ta có: a(a - 1) - (a + 3)(a + 2) = a2 - a - a2 - 2a - 3a - 6
= -6a - 6 = -6(a + 1) \(⋮\)6
<=> -6(a + 1) \(⋮\)6 \(\forall\)a \(\in\)Z
<=> a(a - 1) - (a + 3)(a + 2) \(⋮\) 6 \(\forall\)a \(\in\)Z
6. Thay x = 99 vào biểu thức A, ta có:
A = 995 - 100.994 + 100. 993 - 100.992 + 100 . 99 - 9
A = 995 - (99 + 1).994 + (99 + 1).993 - (99 + 1).992 + (99 + 1).99 - 9
A = 995 - 995 - 994 + 994 + 993 - 993 - 992 + 992 + 99 - 9
A = 99 - 9
A = 90
Vậy ....
Bài 3:
(3x-1)(2x+7)-(x+1)(6x-5)=16.
=> 6x2+21x-2x-7-(6x2-5x+6x-5)=16
=> 6x2+21x-2x-7-6x2+5x-6x+5=16
=> 18x-2=16
=> 18x=16+2
=> 18x=18
=> x=1
Bài 4:
ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6=6\left(n+1\right)⋮6\)
⇔6(n+1) chia hết cho 6 với mọi n là số nguyên
⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên
vậy n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên (đpcm)
Bài 6:
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(\Rightarrow A=x^5-\left(99+1\right)x^4+\left(99+1\right)x^3-\left(99+1\right)x^2+\left(99+1\right)x-9\)
\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)
\(\Rightarrow A=\left(x^5-99x^4\right)-\left(x^4-99x^3\right)+\left(x^3-99x^2\right)-\left(x^2-99x\right)+x-9\)
\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)
\(\Rightarrow A=\left(x-99\right)\left(x^4-x^3+x^2-x\right)+x-9\)
Thay 99=x, ta được:
\(A=\left(x-x\right)\left(x^4-x^3+x^2-x\right)+x-9\)
\(\Rightarrow A=x-9\)
Thay x=99 ta được:
\(A=99-9=90\)
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
\(a,\left(x-1\right)\left(x^2+x+1\right)=x^3-1\)
\(x^3-1-x^3+1=0\)
\(0=0\)
Vậy mọi gt của x thỏa mãn
b: \(VT=x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)
c: \(x\left(2x-3\right)-2x\left(x+1\right)\)
\(=2x^2-3x-2x^2-2x=-5x⋮5\)