Cho tam giác ABC cân tại A có AB=10cm, BC=12cm. Kẻ đường cao AH, từ H kẻ HD // AC. Trên tia đối của tia CA lấy E sao cho CE=BD, DE cắt BC tại I.
a) Tính AH.
b) Chứng minh tam giác BDG cân.
c) Chứng minh I là trung điểm DE.
d) Kẻ DM vuông góc BC, EN vuông góc BC. Chứng minh BC < DE.
Mọi người giúp mình với ạ.
Trả lời 2 câu đầu nha, 2 câu sau tí nữa mình viết sau
a, \(\Delta ABC\)cân tại A có: AH là đường cao của \(\Delta ABC\)\(\Rightarrow\)AH là trung tuyến của \(\Delta ABC\)\(\Rightarrow BH=HC=\frac{BC}{2}=\frac{12}{2}=6\left(cm\right)\)
\(\Delta ABH\)có \(\widehat{AHB}=90^o\)
\(\Rightarrow AB^2=AH^2+BH^2\)(định lý Py-ta-go)
hay \(10^2=AH^2+6^2\)
\(AH^2=64\)
\(AH=8\left(cm\right)\)
b, \(\Delta ABC\)có: \(HD//AC\left(gt\right)\)
\(BH=HC\left(cmt\right)\)
\(\Rightarrow BD=DA\)
\(\Delta ABH\)vuông tại H có: HD là trung tuyến của \(\Delta ABH\)\(\Rightarrow HD=BD=DA=\frac{AB}{2}\)
\(\Delta BDH\)có: \(HD=BD\left(cmt\right)\)\(\Rightarrow\Delta BDH\)cân tại D
c, Nối D với C, H với E
Ta có: \(HD=BD\left(cmt\right)\\ BD=CE\left(gt\right)\)\(\Rightarrow HD=CE\)
Tứ giác DHEC có: \(HD//EC\left(gt\right)\\ HD=EC\left(cmt\right)\)\(\Rightarrow\)DHEC là hình bình hành \(\Rightarrow\)2 đường chéo DE và HC cắt nhau tại trung điểm của mỗi đường \(\Rightarrow\)I là trung điểm của DE
d,