Cho \(x=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\) và \(y=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\)
Tính P=\(\frac{xy}{x+y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(x=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}=\frac{2}{\left(\sqrt[3]{4}\right)^2+\sqrt[3]{4}.\sqrt[3]{2}+\left(\sqrt[3]{2}\right)^2}=\frac{2\left(\sqrt[3]{4}-\sqrt[3]{2}\right)}{\left[\left(\sqrt[3]{4}\right)^2+\sqrt[3]{4}.\sqrt[3]{2}+\left(\sqrt[3]{2}\right)^2\right]\left(\sqrt[3]{4}-\sqrt[3]{2}\right)}\)
\(=\sqrt[3]{4}-\sqrt[3]{2}\).
Tương tự
\(y=\sqrt[3]{4}+\sqrt[3]{2}\). Thay x, y vào ta tính được:
\(M=8\sqrt[3]{4}-16\sqrt[3]{2}\)
đặt \(\sqrt[3]{2}\)=a \(\Rightarrow\)a3=2, ta có:
x=\(\frac{1}{a+a^2+a^3}\)=\(\frac{a-1}{a\cdot\left(a^3-1\right)}\)=\(\frac{a-1}{a}\)
y=\(\frac{6}{a^4-a^3+a^2}\)=\(\frac{6\cdot\left(a+1\right)}{a^2\left(a^3+1\right)}\)=\(\frac{2\left(a+1\right)}{a^2}\)=\(\sqrt[3]{2}\cdot\left(a+1\right)\)
THeo cách đặt thì tính được x,y. Sau đó thay vào B thì tính được bạn nhé
a/ \(P=\frac{1}{\sqrt{xy}}\)
b/ \(x^3=8-6x\)
\(\Rightarrow P=\frac{1}{\sqrt{x\left(x^2+6\right)}}=\frac{1}{\sqrt{x^3+6x}}=\frac{1}{\sqrt{8-6x+6x}}=\frac{1}{2\sqrt{2}}\)