dùng phưng pháp chứng minh phản chúng để chứng minh
a. với n là số nguyên dương, nếu n2 chia hết cho 3 thì n chia hết cho 3
b. chứng minh \(\sqrt{2}\) là số vô tỉ
c. với n là số nguyên dương, nếu n2 là số lẻ thì n là số lẻ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
MÌNH KO viết đề nha
=3nx33+3nx3+2nx22
=3n(33+3)+2nx22
=
=> n chia 3 dư a (0<a <3)
=> n = 3b +a
=> n^2 = 9b^2 + 6ab + a^2 chia hết cho 3
=> a^2 chia hết cho3 mà 0<a <3
=> vô lý do ko có số nào thỏa mãn
=> giả sử sai
=> n^2 chia hết cho 3 <=> n chia hết cho 3b: c:Giả sử: n^2 là số lẻ và n là số chẵn
Vì n chẵn => n = 2k(k thuộc N*)
=>n^2 = 4k^2
=>n^2 là số chẵn(trái với giả thiết)
Vậy khi n^2 là số lè thì n là số lẻ