K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2021

\(\sqrt{8}-2\sqrt{32}+3\sqrt{50}\)

\(\sqrt{2.2^2}-2\sqrt{4^2.2}+3\sqrt{5^2.2}\)

\(2\sqrt{2}-8\sqrt{2}+15\sqrt{2}\)

\(9\sqrt{2}\)

 

23 tháng 8 2021

\(\dfrac{1}{3}+\sqrt{2}-\dfrac{1}{3}-\sqrt{2}\)

\(\left(\dfrac{1}{3}-\dfrac{1}{3}\right)\left(\sqrt{2}-\sqrt{2}\right)\)

= 0

31 tháng 7 2018

Ta có:

\(2\left(\sqrt{n+1}-\sqrt{n}\right)=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{2}{\sqrt{n+1}+\sqrt{n}}< \dfrac{2}{2\sqrt{n}}=\dfrac{1}{\sqrt{n}}\)

\(\Rightarrow S>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)=2\left(\sqrt{101}-1\right)>18\)

\(2\left(\sqrt{n}-\sqrt{n-1}\right)=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}{\left(\sqrt{n}+\sqrt{n-1}\right)}=\dfrac{2}{\sqrt{n}+\sqrt{n-1}}>\dfrac{2}{2\sqrt{n}}=\dfrac{1}{\sqrt{n}}\)

\(\Rightarrow S< 1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)=1+2\left(\sqrt{100}-1\right)=19\)

NV
8 tháng 9 2020

\(S=\frac{2}{2}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{\sqrt{100}}\)

\(S>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+\frac{2}{\sqrt{3}+\sqrt{4}}+...+\frac{2}{\sqrt{100}+\sqrt{101}}\)

\(S>2\left(\sqrt{2}-\sqrt{1}\right)+2\left(\sqrt{3}-\sqrt{2}\right)+...+2\left(\sqrt{101}-\sqrt{100}\right)\)

\(S>2\left(\sqrt{101}-1\right)>2\left(\sqrt{100}-1\right)=18\) (1)

\(S< 1+\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{99}+\sqrt{100}}\)

\(S< 1+2\left(\sqrt{2}-1\right)+2\left(\sqrt{3}-\sqrt{2}\right)+...+2\left(\sqrt{100}-\sqrt{99}\right)\)

\(S< 1+2\left(\sqrt{100}-1\right)=19\) (2)

(1); (2) \(\Rightarrow18< S< 19\)

22 tháng 7 2021

a

NV
19 tháng 9 2019

Ý bạn là \(18< \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}< 19\) ?

Ta có:

\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}=\frac{2}{2\sqrt{1}}+\frac{2}{2\sqrt{2}}+...+\frac{2}{2\sqrt{100}}\)

\(\Rightarrow A>\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{100}+\sqrt{101}}\)

\(\Rightarrow A>\frac{2\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{2\left(\sqrt{101}-\sqrt{100}\right)}{\left(\sqrt{101}-\sqrt{100}\right)\left(\sqrt{101}+\sqrt{100}\right)}\)

\(\Rightarrow A>2\left(\sqrt{2}-1+\sqrt{3}-2+...+\sqrt{101}-\sqrt{100}\right)\)

\(\Rightarrow A>2\left(\sqrt{101}-1\right)>2\left(\sqrt{100}-1\right)=18\)

Tương tự:

\(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}=1+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{100}}\)

\(\Rightarrow A< 1+\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{99}+\sqrt{100}}\)

Nhân liên hợp tử mẫu và rút gọn ta được (giống chứng minh >18 bên trên):

\(A< 1+2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)

\(\Rightarrow A< 1+2\left(\sqrt{100}-1\right)=1+18=19\)

\(\Rightarrow18< A< 19\) (đpcm)

18 tháng 9 2019

giup minh vs