tính
A=-3629+-4552+39120+729+-729
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\left[6.\left(\frac{-1}{3}\right)^2-\left(-\frac{1}{3}\right)+1\right]:\left(\frac{-1}{3}-1\right)\)
\(\Rightarrow A=\left[6.\frac{1}{9}+\frac{1}{3}+1\right]:\left(\frac{-1}{3}-\frac{3}{3}\right)\)
\(\Rightarrow A=\left[\frac{2}{3}+\frac{1}{3}+1\right]:\frac{-4}{3}\)
\(\Rightarrow A=\left[1+1\right].\frac{-3}{4}=2.\frac{-3}{4}=\frac{-3}{2}\)
Mà \(B=\left(729-1^3\right)\left(729-2^3\right)\left(729-3^3\right)...\left(729-125^3\right)\)
\(=\left(729-1^3\right)\left(729-2^3\right)...\left(729-9^3\right)...\left(729-125^3\right)\)
\(=\left(729-1^3\right)\left(729-2^3\right)...0...\left(729-125^3\right)=0\)
Vì \(\frac{-3}{2}< 0\)nên A < B
\(=\dfrac{3\cdot7\cdot3^4\cdot3^6+3^6\cdot3^4\cdot3^3}{3^2\cdot3^4\cdot2\cdot3^{12}\cdot13+3^2\cdot2\cdot3^3\cdot2\cdot3^4\cdot2\cdot3^2+723\cdot729}\)
\(=\dfrac{3^{11}\cdot7+3^{13}}{3^{18}\cdot26+3^{11}\cdot8+3^7\cdot241}\)
\(=\dfrac{3^{11}\left(7+9\right)}{3^7\left(3^{11}\cdot26+3^4\cdot8+241\right)}=\dfrac{3^7\cdot16}{17\cdot101\cdot2683}\)
`Answer:`
\(\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{9}\right)+\left(x+\frac{1}{27}\right)+...+\left(x+\frac{1}{729}\right)=\frac{4209}{729}\)
\(\Leftrightarrow\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{3^2}\right)+\left(x+\frac{1}{3^3}\right)+...+\left(x+\frac{1}{3^6}\right)=\frac{4209}{729}\)
\(\Leftrightarrow6x+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^6}\right)=\frac{4209}{729}\text{(*)}\)
Đặt \(N=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^6}\)
\(\Leftrightarrow3N=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)
\(\Leftrightarrow3N-N=\left(1+\frac{1}{3}+\frac{1}{3^2}+..+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^6}\right)\)
\(\Leftrightarrow2N=1-\frac{1}{3^6}\)
\(\Leftrightarrow2N=\frac{728}{729}\)
\(\Leftrightarrow N=\frac{364}{729}\)
\(\text{(*)}\Leftrightarrow6x+\frac{364}{729}=\frac{4209}{729}\)
\(\Leftrightarrow6x=\frac{3845}{729}\)
\(\Leftrightarrow x=\frac{3845}{4374}\)