Cho phương trình 3mx^2+2(2m+1)x+m=0. Xác định m để phương trình có 2 nghiệm âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)
\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)
=>4m=-13
hay m=-13/4
c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)
=>-8m>=-4
hay m<=1/2
Đáp án:
a) Thay m=3
x² - 2(3-1)x + 3² -6=0
⇔ x² - 4x + 3=0
⇔ x² -3x -x + 3 = 0
⇔ x(x-3) - (x-3) = 0
⇔(x-3) (x-1) =0
⇒ x-3 = 0 hoặc x-1 =0
⇒ x= 3 hoặc x= 1
b) Ta có Δ'= (m-1)² - m² + 6 = m² -2m + 1 - m² + 6 = -2m + 7
Để pt có 2 nghiệm thì Δ' ≥ 0 hay -2m + 7≥ 0
⇒ m ≤ 3,5
Áp dụng hệ thức vi ét cho pt trên ta có
x1x1 + x2x2 = 2(m-1)
x1x1 x2x2 = m2m2 -6
Ta có x21x12 + x22x22 = 16
⇔ x21x12 + x22x22 + 2x1x1 x2x2 = 16 + 2 x1x1 x2x2
⇔(x1+x2)2x1+x2)2 = 16 + 2 x1x1 x2x2
Thay vào ta đc
4 (m-1)² = 16 + 2 (m² - 6)
⇔4 ( m² - 2m + 1) = 16 + 2m² -12
⇔ 4m² - 8m + 4 = 16 + 2m² -12
⇔ 2m² -8m =0
⇔ m² - 4m = 0
⇔ m( m-4) =0
⇒ m=0 hoặc m-4 = 0
⇒m=0 (TM) hoặc m=4 (KTM)
Vậy m =0
Chắc bạn nhầm đề bài rồi bạn nhé, dù sao mình cũng cảm ơn bạn!
Ptr có nghiệm `<=>\Delta' >= 0`
`<=>(-m)^2-(-m) >= 0`
`<=>m(m+1) >= 0`
`<=>` $\left[\begin{matrix} m \le -1\\ m \ge 0\end{matrix}\right.$
`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=2m),(x_1.x_2=c/a=-m):}`
Ta có:`x_1 ^2+2mx_2+19(m+1)=0`
`<=>x_1 ^2+(x_1+x_2)x_2+19(m+1)=0`
`<=>x_1 ^2+x_1.x_2+x_2 ^2+19(m+1)=0`
`<=>(x_1+x_2)^2-x_1.x_2+19(m+1)=0`
`<=>(2m)^2-(-m)+19m+19=0`
`<=>4m^2+10m+19=0`
Ptr có:`\Delta'=5^2-4.19=-51 < 0`
`=>` Ptr vô nghiệm
Vậy ko có gtr `m` t/m yêu cầu đề bài