1.Cho tam giác ABC vuông tại A vẽ đường cao AH, AB=6 cm, AC=8 cm
a C/m tam giác HBA đồng dạng với tam giác ABC
b Tính BC, AH, BH
c Chứng minh AH.AH=HB.HC
d Gọi I và K lần lượt là hình chiếu của H lên cạnh AB, AC
Chứng minh AI.AB=AK.AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
BH=6^2/10=3,6cm
CH=10-3,6=6,4cm
c: ΔACB vuông tại A
mà AH là đường cao
nên AH^2=HB*HC
d: ΔAHB vuông tại H có HI vuông góc AB
nên AI*AB=AH^2
ΔAHC vuông tại H có HK là đường cao
nên AK*AC=AH^2=AI*AB
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(AH=AB\cdot\dfrac{AC}{BC}=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)
BH=3,6(cm)
c: Xét ΔAHB vuông tại H có HI là đường cao
nên \(AI\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
BH=6^2/10=3,6cm
a. Xét ΔABC và ΔHBA :
\(\widehat{A}\) = \(\widehat{H}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔABC \(\sim\) ΔHBA (g.g)
b. Xét ΔABC vuông tại A
Theo định lý Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 62 + 82
\(\Rightarrow\) BC2 = 100
\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm
Ta có: ΔABC \(\sim\) ΔHBA
\(\dfrac{AH}{CA}\) = \(\dfrac{BC}{BA}\)
\(\Rightarrow\) \(\dfrac{AH}{8}\) = \(\dfrac{10}{6}\)
\(\Rightarrow\) AH = 13,3 cm
\(\dfrac{BH}{BA}\) = \(\dfrac{BC}{BA}\)
\(\Rightarrow\) \(\dfrac{BH}{6}\) = \(\dfrac{10}{6}\)
\(\Rightarrow\) BH = 10 cm
c. Xét ΔAIH và ΔBAC :
\(\widehat{AIH}\) = \(\widehat{BAC}\) = 900
Ta có: \(\widehat{IAH}\) = \(\widehat{ACB}\) (phụ thuộc \(\widehat{HAC}\) )
\(\Rightarrow\) ΔAIH \(\sim\) ΔBAC (g.g)
\(\Rightarrow\) \(\dfrac{AI}{IH}\) = \(\dfrac{AC}{AB}\)
\(\Rightarrow\)\(\dfrac{AI}{AK}\) = \(\dfrac{AC}{AB}\) (vì AKIH là HCN)
\(\Rightarrow\) AI . AB = AK. AC(đpcm)
a) Xét ΔABC và ΔHBA ta có:
\(\widehat{B}\) chung
\(\widehat{BAC}=\widehat{BHA}=90^0\)
⇒ΔABC∼ ΔHBA
b) Xét ΔABC vuông tại A, áp dụng định lí pytago ta có:
\(BC^2=AB^2+AC^2\)
\(=6^2+8^2\)
\(=100\)
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
Vì ΔABC ∼ ΔBHA(cmt)
\(\Rightarrow\dfrac{AB}{BH}=\dfrac{AC}{AH}=\dfrac{BC}{AB}hay\dfrac{6}{BH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\)
Suy ra: \(AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)
\(BH=\dfrac{6.3}{5}=3,6\left(cm\right)\)
a, Xét tam giác HBA và tam giác ABC có
^B _ chung ; ^HBA = ^BAC = 900
Vậy tam giác HBA ~ tan giác ABC (g.g)
b, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{24}{5}cm\)
\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{36}{10}=\dfrac{18}{5}cm\)
c, -bạn tự cm nhé
tam giác AEH ~ tam giác HEB (g.g)
\(\dfrac{AE}{HE}=\dfrac{HE}{BE}\Rightarrow HE^2=AE.BE\)
tam giác AFH ~ tam giác HFC (g.g)
\(\dfrac{AF}{HF}=\dfrac{FH}{FC}\Rightarrow FH^2=AF.FC\)
Cộng vế với vế ta được \(HE^2+FH^2=EF^2\)( theo định lí Pytago )
a) Xét tam giác HBA và tam giác ABC có:
góc B chung
góa AHB = góc CAB = 900
suy ra: tgiac HBA ~ tgiac ABC (g.g)
b) Áp dụng Pytago ta có:
AB2 + AC2 = BC2
=> BC2 = 62 + 82 = 100
=> BC = 10
Áp dụng hệ thức lượng ta có:
AB . AC = BC .AH
=> 6 . 8 = 10 . AH
=> AH = 4,8
AB2 = BH . BC
=> 36 = BH . 10
=> BH = 3,6
d) Áp dụng hệ thức lượng ta có:
AI . AB = AH2; AK . AC = AH2
suy ra: AI.AB = AK.AC
p/s: lần sau đăng bài bạn chọn cho đúng trình độ của lớp nha, như vậy người làm sẽ chọn cách phù hợp với khối đó
233rxzcr