Lũ sinh vật hạ đẳng kia t có việc cần bọn m giúp
làm sao để giải pt bậc 3 dạng , ax^3+bx^2+c=0
Vd 7x^3+18x^2+12=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
bài đó có dạng
ax4+bx3+cx2+dx+e=0 (Với b=d hoặc b=-d)
Cách làm có nhìu cách tui chỉ rành một cách nên tui chỉ
Với b=d thì đặt t=x2+1
Với b=-d thì đặt t=x2-1
tự nguyên cứu tiếp đi
ta xét thấy đây là phương trình đối xứng vì hệ số của các số hạng cách đều số hạng đầu và số hạng cuối bằng nhau (ví dụ 3x4 và 3 có cùng hệ số là 3, -13x3 và -13x có cùng hệ số là -13....)
cụ thể đây là phương trình đối xứng bậc chẵn (số hạng đàu có bậc chẵn là 4)
giải như sau
ta nhẩm thấy 0 không phải là nghiệm của phương trình nên chia cả hai vế cho x2 ta có
3x2-13x+16-13/x + 3/x2 =0
<=>(3x^2 + 3/x^2) - (13x + 13/x) +16 =0
<=>3(x^2 + 1/x^2) - 13(x+1/x)=0
đặt x+1/x = a thì x^2+1/x^2=a^2 - 2 (cái này bạn dùng hằng đẳng thức (a+b)^2 để suy ra nhé)
thay vào ta được
3a - 13(a^2 - 2) +16 = 0
3a - 13a^2 + 26 =0
đến đây bạn giải a bằng cách đưa về phương trình tích rồi tìm x là xong
Giả sử \(x_1=\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}=\frac{\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}=-5+2\sqrt{6}\)
Do \(x_1\) là nghiệm của pt nên:
\(a\left(-5+2\sqrt{6}\right)^2+b\left(-5+2\sqrt{6}\right)+c=0\)
\(\Leftrightarrow49a-20a\sqrt{6}-5b+2b\sqrt{6}+c=0\)
\(\Leftrightarrow49a-5b+c=\left(20a-2b\right)\sqrt{6}\)
Do vế trái là đại lượng hữu tỉ, vế phải vô tỉ nên đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}49a-5b+c=0\\20a-2b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=10a\\49a-50a+c=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}c=a\\b=10a\end{matrix}\right.\) thay vào pt ban đầu:
\(ax^2+10ax+a=0\Leftrightarrow x^2+10x+1=0\)
\(\Rightarrow x_2=\frac{1}{x_1}=-5-2\sqrt{6}\)
viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn
Máy tính =))
Kính gửi bn sinh vật thượng đẳng :))
Đừng lm bà nội bọn mình ;lol;