K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2019

P/s: Em mới lớp 7 thôi nên có gì sai mong anh/chị thông cảm ạ.

Khai triển ra ta được: \(Q=x^2+y^2+z^2+3\left(xy+xz+yz\right)\)

\(P=2\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\)

Do P = Q nên P - Q = 0.Hay:\(x^2+y^2+z^2-xy-yz-zx=0\)

Nhân 2 vào hai vế suy ra \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}}\) .Suy ra \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

Dấu "=' xảy ra khi x = y = z (đpcm)

chứng minh ngược lại bạn ơi

chứng minh x=y=z thì p=q 

25 tháng 9 2018

Ta có:

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(x+y-2z\right)^2\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=6x^2+6y^2+6z^2-6xy-6yz-6zx\)

\(\Rightarrow4x^2+4y^2+4z^2-4xy-4yz-4zx=0\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\Rightarrow x=y=z\)

11 tháng 6 2018

Bạn thử khai triển hết vế sai đi

26 tháng 11 2016

Đặt \(a=x+y,b=y+z,c=z+x\)

Khi đó nếu P = Q tức là \(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

Từ đó bạn suy ra nhé ! ^^

26 tháng 11 2016

thanks you very muck :))

9 tháng 9 2020

Động não tí đi Quỳnh, a thấy bài này cũng không khó.

9 tháng 9 2020

Bài dễ mừ, có phải Croatia thật ko vậy :))  (viết đề bị nhầm, là x,y,z dương chứ :))

Áp dụng Cauchy-Schwarz dạng cộng mẫu số:

\(\frac{x^2}{\left(x+y\right)\left(x+z\right)}+\frac{y^2}{\left(y+z\right)\left(y+x\right)}+\frac{z^2}{\left(z+x\right)\left(z+y\right)}\ge\)

\(\frac{\left(x+y+z\right)^2}{\left(x+y\right)\left(x+z\right)+\left(y+z\right)\left(y+x\right)+\left(z+x\right)\left(z+y\right)}=\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\)

Xét \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\Rightarrow\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}\)

\(=\frac{\left(x+y+z\right)^2}{\frac{4}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)

Dấu bằng xảy ra khi và chỉ khi x=y=z,  Xong! :))

2 tháng 8 2017

surf trc khi hỏi

2 tháng 8 2017

là sao bạn