Tìm giá trị lớn nhất của
a) x- x^2
b) 2x- 2x^2 -5
Giúp mình nha,,, cần gấp quá ^_^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-\left|x-7\right|+2\le2\\ A_{max}=2\Leftrightarrow x-7=0\Leftrightarrow x=7\\ B=-5-\left|2x+3\right|\le-5\\ A_{max}=-5\Leftrightarrow2x+3=0\Leftrightarrow x=-\dfrac{3}{2}\)
\(P=2017-2x^2+4x-8y^2-8y\\ P=-2\left(x^2-2x+1\right)-2\left(4y^2+4y+1\right)+2021\\ P=-2\left(x-1\right)^2-2\left(2y+1\right)^2+2021\le2021\\ P_{max}=2021\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{1}{2}\end{matrix}\right.\)
\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)
\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)
\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)
\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)
\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)
Biểu thức A bạn viết đúng chưa?
Đặt A=8/ x^2 - 2x +5.
Để A đạt giá trị lớn nhất thid x^2 - 2x + 5 phải đạt giá trị nhỏ nhất.
Ta có: x^2 - 2x +5= (x^2 - 2x + 1) + 4=(x - 1)^2 +4
Vì (x - 1)^2 \(\ge\)0 nên (x - 1)^2 + 4\(\ge\)4
=> Min x^2 - 2x + 5=4
=>Max A=8/4=2 <=> (x - 1)^2=0
<=> x = 1
Vậy Max A= 2 khi và chỉ khi x=1
TA có 8/x^2-2x+5=8/x^2-2x+1+4=8/(x-1)^2+4
Vì (x-1)^2 >= 0=> (x-1)^2+4>=4 =>8/(x-1)^2+4<=2 => 8/x^2-2x+5<=2
Dấu = xảy ra khi và chỉ khi x-1=0
x=1
Vậy GTLN của bt là 2 khi x=1
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
`a)` Cho `3x+6=0`
`=>3x=-6`
=>x=-2`
Vậy nghiệm của đa thức là `x=-2`
`b)` Cho `2x^2-3x=0`
`=>x(2x-3)=0`
`@TH1:x=0`
`@TH2:2x-3=0=>2x=3=>x=3/2`
Vậy nghiệm của đa thức là `x=0` hoặc `x=3/2`
____________________________________________
Câu `2:`
Vì `(x+1)^2 >= 0 AA x`
`=>2(x+1)^2 >= 0 AA x`
`=>2(x+1)^2-5 >= -5 AA x`
Hay `A >= -5 AA x`
Dấu "`=`" xảy ra khi `(x+1)^2=0=>x+1=0=>x=-1`
Vậy `GTN N` của `A` là `-5` khi `x=-1`
Câu 1:
a, Cho 2x+6=0
2x = 0-6=-6
x = -6 :2=-3
Vậy đa thức trên có nghiệm là x=-3
b, Cho đa thức 2x2-3x=0
2xx-3x=0
x(2x-3x)=0
1,x=0
2,2x-3x=0
x(2-3)=0
-x =0
=>x=0
Vậy đa thức tên có nghiệm là x=0
Câu 2:
Để đa thức A có giá trị nhỏ nhất thì 2(x+1)2-5 phải bé nhất;
mà 2(x-1)2≥0
Dấu bằng chỉ xuất hiện khi và chỉ khi :
2(x-1)2=0
(x-1)2=0:2=0=02
=>x-1=0
x =0+1=1
=> A = 2(1-1)2-5
A =2.0-5
A 0-5 =-5
Vậy A có giá trị bé nhất là -5 với x= 1
\(\left|x\right|=2\Rightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
Thay x=-2 vào B ta có:
\(B=4x^3+x-2022=4.\left(-2\right)^3+\left(-2\right)-2022=-32-2-2022=-2056\)
Thay x=2 vào B ta có:
\(B=4x^3+x-2022=4.2^3+2-2022=32+2-2022=-1988\)
a) -x2+x=-(x2-x+1/4)+1/4=-(x-1/2)2+1/4 <=1/4
b) -2x2+2x-5=-2(x2-x+1/4)+1/2-5=-2(x-1/2)2-4,5<=-4,5