Tính :
a) \(\sqrt{2,5}.\sqrt{360}\)
b) \(\sqrt{\frac{-49}{-121}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{8,1}.\sqrt{250}\)
\(=\sqrt{81}.\sqrt{25}\)
\(=9.5\)
\(=45\)
\(\sqrt{2,5}.\sqrt{360}\)
\(=\sqrt{25}.\sqrt{36}\)
\(=5.6\)
\(=30\)
\(\sqrt{\frac{-49}{-121}}=\sqrt{\frac{49}{121}}\)
\(=\frac{\sqrt{49}}{\sqrt{121}}\)
\(=\frac{7}{11}\)
\(\sqrt{\frac{-36}{-169}}=\sqrt{\frac{36}{169}}\)
\(=\frac{\sqrt{36}}{\sqrt{169}}=\frac{6}{13}\)
a) Trục căn thức ở mỗi số hạng của biểu thức A,ta có:
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)=\(\frac{\sqrt{2}+\sqrt{1}}{1-2}-\frac{\sqrt{3}+\sqrt{2}}{2-3}+\frac{\sqrt{3}+\sqrt{4}}{3-4}-...+\frac{\sqrt{2007}+\sqrt{2008}}{2007-2008}\)
= \(-\left(\sqrt{1}+\sqrt{2}\right)+\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)+...-\left(\sqrt{2007}+\sqrt{2008}\right)\)
=\(-1-\sqrt{2008}\)
b)Ta xét số hạng tổng quát: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào biểu thức B ta được:
B= \(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-...+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}=1-\frac{1}{11}\)= \(\frac{10}{11}\)
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)
\(=\frac{-1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-\frac{1}{\sqrt{4}-\sqrt{3}}+\frac{1}{\sqrt{5}-\sqrt{4}}-....+\frac{1}{\sqrt{2007}-\sqrt{2006}}-\frac{1}{\sqrt{2008}-\sqrt{2007}}\)
\(=\frac{-1\cdot\left(\sqrt{2}+\sqrt{1}\right)}{2-1}+\frac{1\cdot\left(\sqrt{3}+\sqrt{2}\right)}{3-2}-\frac{1\cdot\left(\sqrt{4}+\sqrt{3}\right)}{4-3}+\frac{1\cdot\left(\sqrt{5}+\sqrt{4}\right)}{5-4}-...+\frac{1\cdot\left(\sqrt{2007}+\sqrt{2006}\right)}{2007-2006}-\frac{1 \left(\sqrt{2008}+\sqrt{2007}\right)}{2008-2007}\)
\(=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-...+\sqrt{2006}+\sqrt{2007}-\sqrt{2007}-\sqrt{2008}\)
\(=-1-\sqrt{2008}\)
\(a,\sqrt{81}=9\)
\(b.\sqrt{8100}=90\)
\(c,\sqrt{64}=8\)
\(d,\sqrt{25}=5\)
\(e,\sqrt{0,64}=0,8\)
\(f,\sqrt{10000}=100\)
\(g,\sqrt{0,01}=0,1\)
\(h,\sqrt{\frac{49}{100}}=\frac{7}{10}\)
\(i,\sqrt{\frac{0,09}{121}}=\frac{0,3}{11}\)
\(j,\sqrt{\frac{4}{25}}=\frac{2}{5}\)
~Study well~
#JDW
a) 9
b) 90
c) 8
d) 5
e) 0,8
f) 100
g) 0,1
h) \(\frac{7}{10}\)
i) \(\frac{0,3}{11}\)
j) 0,4.
Với \(k\in N;k\ne0\) ta có :
\(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{\left(k+1\right)}}=\frac{1}{\sqrt{k\left(k+1\right)}\left(\sqrt{k}+\sqrt{k+1}\right)}\)
\(=\frac{\sqrt{k+1}+\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)\left(\sqrt{k+1}+\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}\)
\(=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
Áp dụng ta có :
\(M=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}=1-\frac{1}{11}=\frac{10}{11}\)
a, \(\frac{8^{15^{ }}.3^{16}}{4^{23^{ }}.9^8}=\frac{2^{45}.3^{16}}{2^{46}.3^{16}}=\frac{2^{45}}{2^{46}}=\frac{1}{2}\)
b, \(\sqrt{121}-4.\sqrt{9}+\sqrt{36}=11-4.3+6=11-12+6=5\)
c,
\(\frac{2^5}{5^2}+5\frac{1}{2}.\left(4,5-2,5\right)+\frac{2^3}{-4}+\left(-2016\right)^0\)
\(\frac{4}{25}+\frac{11}{2}.2+\frac{8}{-4}+1=\frac{4}{25}+11+\left(-2\right)+1=\frac{4}{25}+10\)
= \(\frac{254}{25}\)
\(\sqrt{2,5}.\sqrt{360}\)
\(=\sqrt{25}.\sqrt{36}\)
\(=5.6\)
\(=30\)
\(\sqrt{\frac{-49}{-121}}\)
\(=\sqrt{\frac{49}{121}}\)
\(=\frac{\sqrt{49}}{\sqrt{121}}=\frac{7}{11}\)