K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

a) Ta có : 2^300=2^3.100=8^100

               3^200=3^2.100=9^100

Ta thấy 8^100<9^100 

=>2^300<3^200

b)Ta có:54^4=(2.3^3)^4=2^4.3^12

            21^12=(3.7)^12=3^12.7^17

Ta thấy 3^12=3^12

            2^4<7^12

Do đó 3^12.2^4<3^12.7^13

Hay 54^4<21^12

c) Ta có 5^100=5^100

             2^200=(2^2)^100=4^100

Ta thấy 5^100>4^100

Do đó 5^100>2^200

d)Ta có 10^20=(10^2)^10=20^10

Ta thấy 20^10<40^10

Hay 10^20<40^10

            

18 tháng 11 2021

a)

Ta có : A = 275 = (33)5 = 315

            B = 2433 = (35)3 = 315

Vì 315 = 315 => A = B

18 tháng 11 2021

b )

Ta có : A = 2300 = (23)100 = 8100

            B = 3200 = (32)100 = 9100

Vì 8100 < 9100 => A<B

\(2^{2004}=\left(2^{668}\right)^3\)

\(5^{891}=\left(5^{297}\right)^3\)

mà \(2^{668}>5^{297}\)

nên \(2^{2004}>5^{891}\)

10 tháng 8 2021

Vậy làm sao 2668>5297

`@` `\text {Ans}`

`\downarrow`

`a)`

\(3^{200}\text{ và }2^{300}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

\(2^{300}=\left(2^3\right)^{100}=8^{100}\)

Vì `9 > 8 => 9^100 > 8^100`

`=> 3^200 > 2^300`

`b)`

\(27^{101}\text{ và }81^{35}\)

\(27^{101}=\left(3^3\right)^{101}=3^{303}\)

\(81^{35}=\left(3^4\right)^{35}=3^{140}\)

Vì `303 > 140 => 3^303 > 3^140`

`=> 27^101 > 81^35`

`c)`

\(2^{332}\text{ và }3^{223}\)

\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì `9 > 8 => 9^111 > 8^111`

`=> 2^332 < 3^223.`

a: 3^200=9^100

2^300=8^100

mà 9>8

nên 3^200>2^300

b: 27^101=3^303

81^35=3^140

mà 303>140

nên 27^101>81^35

c: 2^332<2^333=8^111

3^223>3^222=9^111

mà 9>8

nên 3^223>8^111>2^332