Rút gọn các biểu thức:
a) \(\sqrt{\dfrac{x-2\sqrt{x+1}}{x+2\sqrt{x+1}}}\)(x lớn hơn hoặc bằng 0)
b) \(\dfrac{x-1}{\sqrt{y-1}}\)\(\sqrt{\dfrac{y-2\sqrt{y+1}}{\left(x-1\right)^2}}\) (x khác 1, y khác 1 và y lớn hơn hoặc bằng 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(\dfrac{1}{2\sqrt{x}}-\dfrac{x}{2\sqrt{x}}\right)^2.\left(\dfrac{\left(\sqrt{x}-1\right)^2}{x-1}-\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}\right)\)
\(=\left(\dfrac{1-x}{2\sqrt{x}}\right)^2.\left(\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)
\(=\dfrac{\left(1-x\right)^2}{2\sqrt{x}}.\dfrac{-4\sqrt{x}}{-\left(1-x\right)}\)
\(=\left(1-x\right).2\sqrt{x}\)
\(=2\sqrt{x}-2x\sqrt{x}\)
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\dfrac{x\sqrt{x}+y\sqrt{y}-\left(x-y\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\dfrac{x\sqrt{x}+y\sqrt{y}-x\sqrt{x}+x\sqrt{y}+y\sqrt{x}-y\sqrt{y}}{\sqrt{x}+\sqrt{y}}=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\left|\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right|=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)( do \(x\ge1\))
a: Ta có: \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
\(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)
\(=\sqrt{xy}\)
b: Ta có: \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)
\(=\dfrac{ \left|\sqrt{x}-1\right|}{\left|\sqrt{x}+1\right|}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
a) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\sqrt{\dfrac{\left(\sqrt{x+1}\right)^2}{\left(\sqrt{x}+1\right)^2}}\)
=\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1};x\ge0\)
b) Ta có: \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y}-1}{\left(x-1\right)^2}\)
\(=\dfrac{1}{x-1}\)
a) \(\sqrt{\dfrac{x-2\sqrt{x+1}}{x+2\sqrt{x+1}}}\) = \(\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}\) = \(\dfrac{\sqrt{x-1}}{\sqrt{x+1}}\)
b) \(\dfrac{x-1}{\sqrt{y}-1}\)\(\sqrt{\dfrac{y-2\sqrt{y+1}}{\left(x-1\right)^4}}\)
= \(\dfrac{x-1}{\sqrt{y}-1}\) \(\sqrt{\dfrac{\left(y-1\right)^4}{\left(x-1\right)^4}}\)
= \(\dfrac{x-1}{\sqrt{y}-1}\)\(\dfrac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^2}\)
= \(\dfrac{\sqrt{y-1}}{x-1}\)
Chúc bạn học tốt :3
Thanks anyway <3