Cho \(5\sin2\alpha-6\cos\alpha=0\) và \(0< \alpha< \dfrac{\pi}{2}\)
Tính A = \(\cos(\dfrac{\pi}{2}-\alpha)+\sin\left(2017\pi-\alpha\right)-\cot(2018\pi+\alpha)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1) ta có : \(G=cos\left(\alpha-5\pi\right)+sin\left(\dfrac{-3\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{3\pi}{2}-\alpha\right)\)
\(G=cos\left(\alpha-\pi\right)+sin\left(\dfrac{\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{\pi}{2}-\alpha\right)\)
\(G=cos\left(\pi-\alpha\right)+sin\left(\dfrac{\pi}{2}-\left(-\alpha\right)\right)-tan\left(\pi+\alpha-\dfrac{\pi}{2}\right).cot\left(\dfrac{\pi}{2}-\alpha\right)\) \(G=cos\left(\alpha\right)+cos\left(\alpha\right)+tan\left(\dfrac{\pi}{2}-\alpha\right).cot\left(\dfrac{\pi}{2}-\alpha\right)=2cos\alpha+1\) bài 2) ta có : \(H=cot\left(\alpha\right).cos\left(\alpha+\dfrac{\pi}{2}\right)+cos\left(\alpha\right)-2sin\left(\alpha-\pi\right)\) \(H=cot\left(\alpha\right).cos\left(\dfrac{\pi}{2}-\left(-\alpha\right)\right)+cos\left(\alpha\right)+2sin\left(\pi-\alpha\right)\) \(H=-cot\left(\alpha\right).sin\left(\alpha\right)+cos\left(\alpha\right)+2sin\left(\alpha\right)\) \(H=-cos\alpha+cos\alpha+2sin\alpha=2sin\alpha\)
a, \(\dfrac{1-sin2a}{1+sin2a}\)
\(=\dfrac{sin^2a+cos^2a-2sina.cosa}{sin^2a+cos^2a+2sina.cosa}\)
\(=\dfrac{\left(sina-cosa\right)^2}{\left(sina+cosa\right)^2}\)
\(=\dfrac{2sin^2\left(a-\dfrac{\pi}{4}\right)}{2sin^2\left(a+\dfrac{\pi}{4}\right)}\)
\(=\dfrac{sin^2\left(\dfrac{\pi}{4}-a\right)}{sin^2\left(a+\dfrac{\pi}{4}\right)}\)
\(=\dfrac{cos^2\left(\dfrac{\pi}{4}+a\right)}{sin^2\left(\dfrac{\pi}{4}+a\right)}=cot\left(\dfrac{\pi}{4}+a\right)\)
b, \(\dfrac{sina+sinb.cos\left(a+b\right)}{cosa-sinb.sin\left(a+b\right)}\)
\(=\dfrac{sina+sinb.cosa.cosb-sinb.sina.sinb}{cosa-sinb.sina.cosb-sinb.cosa.sinb}\)
\(=\dfrac{sina.\left(1-sin^2b\right)+sinb.cosa.cosb}{cosa.\left(1-sin^2b\right)-sinb.sina.cosb}\)
\(=\dfrac{sina.cos^2b+sinb.cosa.cosb}{cosa.cos^2b-sinb.sina.cosb}\)
\(=\dfrac{\left(sina.cosb+sinb.cosa\right).cosb}{\left(cosa.cosb-sinb.sina\right).cosb}\)
\(=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}=tan\left(a+b\right)\)
\(A=sin\left(\dfrac{\pi}{2}-\alpha+2\pi\right)+cos\left(\pi+\alpha+12\pi\right)-3sin\left(\alpha-\pi-4\pi\right)\)
\(=sin\left(\dfrac{\pi}{2}-\alpha\right)+cos\left(\pi+\alpha\right)-3sin\left(\alpha-\pi\right)\)
\(=cos\alpha-cos\alpha+3sin\left(\pi-\alpha\right)\)\(=3sin\alpha\)
\(B=sin\left(x+\dfrac{\pi}{2}+42\pi\right)+cos\left(x+\pi+2016\pi\right)+sin^2\left(x+\pi+32\pi\right)+sin^2\left(x-\dfrac{\pi}{2}-2\pi\right)+cos\left(x-\dfrac{\pi}{2}+2\pi\right)\)
\(=sin\left(x+\dfrac{\pi}{2}\right)+cos\left(x+\pi\right)+sin^2\left(x+\pi\right)+sin^2\left(x-\dfrac{\pi}{2}\right)+cos\left(x-\dfrac{\pi}{2}\right)\)
\(=cosx-cosx+sin^2x+cos^2x+sinx\)
\(=1+sinx\)
\(C=sin\left(x+\dfrac{\pi}{2}+1008\pi\right)+2sin^2\left(\pi-x\right)+cos\left(x+\pi+2018\pi\right)+cos2x+sin\left(x+\dfrac{\pi}{2}+4\pi\right)\)
\(=sin\left(x+\dfrac{\pi}{2}\right)+2sin^2\left(\pi-x\right)+cos\left(x+\pi\right)+cos2x+sin\left(x+\dfrac{\pi}{2}\right)\)
\(=cosx+2sin^2x-cosx+1-2sin^2x+cosx\)
\(=1+cosx\)
\(VT=\dfrac{-tan\left(\dfrac{\pi}{2}-a\right)cos\left(2\pi-\dfrac{\pi}{2}+a\right)-sin^3\left(4\pi-\dfrac{\pi}{2}-a\right)}{cos\left(\dfrac{\pi}{2}-a\right)tan\left(2\pi-\dfrac{\pi}{2}+a\right)}\)
\(=\dfrac{-cota.sina+sin^3\left(\dfrac{\pi}{2}+a\right)}{sina.\left(-cota\right)}=\dfrac{-cosa+cos^3a}{-cosa}=1-cos^2a=sin^2a\)
Lời giải:
$\frac{\pi}{2}< a< \pi$ nên $\sin a>0; \cos a< 0$
$-3=\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=-3\cos a$
$\Rightarrow \sin ^2a=9\cos ^2a$
$\Rightarrow 10\sin ^2a=9(\sin ^2a+\cos ^2a)=9$
$\Rightarrow \sin ^2a=\frac{9}{10}$
$\Rightarrow \sin a=\frac{3}{\sqrt{10}}$
$\cos a=\frac{\sin a}{-3}=\frac{-1}{\sqrt{10}}$
$\cot a=\frac{1}{\tan a}=\frac{-1}{3}$
\(5sin2a-6cosa=0\)
\(\Leftrightarrow sin2a=\dfrac{6}{5}cosa\)
\(\Leftrightarrow2\cdot sina\cdot cosa=\dfrac{6}{5}\cdot cosa\)
\(\Leftrightarrow cosa\left(2sina-\dfrac{6}{5}\right)=0\)
=>cosa=0 hoặc sina=3/5
hay \(a=\dfrac{\Pi}{2}+k\Pi\) hoặc \(\left[{}\begin{matrix}a=arcsin\left(\dfrac{3}{5}\right)+k2\Pi\\a=\Pi-arcsin\left(\dfrac{3}{5}\right)+k2\Pi\end{matrix}\right.\)
mà 0<a<pi/2
nên \(a=arcsin\left(\dfrac{3}{5}\right)\)
\(A=sina+sina+cota=2\cdot sina+cota\)
\(=\dfrac{38}{15}\)