Cho tam giác ABC vuông ở B,đường cao BH.Biết AB=4cm,BC=3cm
a) Tính AC,BH
b)Chứng minh tam giác ABC đồng dạng với tam giác AHB và tính độ dài AH
c) tính diện tích tam giác AHB và tam giác CHB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: BC=căn 3^2+4^2=5cm
AH=3*4/5=2,4cm
c: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
=>S AHB/S CHA=(AB/CA)^2=9/16
a) Xét ΔAHB và ΔCAB có
Góc B chung
Góc AHB= Góc A=90o
=> ΔAHB ∼ ΔCAB (gg)
b) Xét ΔABC có Góc A=90o
=> AB2 + AC2=BC2
=>152+202=BC2
=> BC=25 cm
ta lại có SΔABC =\(\dfrac{AB.AC}{2}=\dfrac{BC.AH}{2}\)
=>\(AB.AC=BC.AH=>15.20=25.AH\)=>AH=12cm
c) M là trung điểm của BC=> BM=\(\dfrac{1}{2}BC=\dfrac{1}{2}.25=12,5\) cm
Xét ΔABH có góc BHA=90o
=> HB2+AH2=AB2
=> BH2+122=152=> BH=9cm
ta có AH⊥BC => AH⊥BM ( M∈BC)
SΔAHM=SΔABM-SΔABH
=> SΔAHM=\(\dfrac{12.12,5}{2}-\dfrac{12.9}{2}=21cm^2\)
Với 9 tia chung gốc số góc tạo thành là
A. 16 góc
B. 72 góc
C. 36 góc
D. 42 góc
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
HA=9*12/15=108/15=7,2cm
HB=9^2/15=81/15=5,4cm
\(S_{HBA}=\dfrac{1}{2}\cdot7.2\cdot5.4=19.44\left(cm^2\right)\)
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>EF=AH
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
S=1/2*3*4=6(cm2)
Áp dụng định lí Pi ta go Tam giác ABC => \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
Tam giác ABC có AM là Tia phân giác của A => AB/MB=AC/MC
=> AB/AC=MB/MC=4/3
b.
Tam giác AHB và tam giác CAB có:
Góc B chung
Góc BHA = Góc A = 90 độ
=> Tg AHB ~ tg CAB (gg) (1)
Tam giác CAB và tam giác CHA có:
C chung
góc CHA = góc A = 90 độ
=> Tg CAB ~ tg CHA (gg) (2)
Từ 1 và 2 => TG AHB ~ tg CHA
Giup minh vs
https://olm.vn/hoi-dap/question/1269512.html