Trên các cạnh BC, CD của hình vuông ABCD có AB =1 lần lượt lấy các điểm M và N sao cho MC + CN + MN =2. Gọi P, Q lần lượt là giao điểm của BD với AM và AN. Chứng minh rằng các đoạn thẳng BP, PQ,QD lập thành 3 cạnh của một tam giác vuông
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
29 tháng 10 2021
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
CM
22 tháng 12 2019
c) PQ ⊥ BD (gt). Xét các tam giác vuông POB và QOD có:
∠POB = ∠QOD∠ (đối đỉnh),
OB = OD
∠PBO = ∠QDO (so le trong).
Do đó ΔPOB = ΔQOD (g.c.g) ⇒ BP = DQ
Lại có BP // DQ nên tứ giác PBQD là hình bình hành
Mặt khác PBQD có hai đường chéo vuông góc nên là hình thoi.