tim min,max
P=\(\dfrac{x^2-3x+2}{x^2+1}\)
Q=\(\dfrac{x^2-xy+2y^2}{x^2-xy+y^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phương trình 2 ⇔\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy}=7-3xy\)⇔\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2=7-3xy\)
đoạn sau bạn tự giải nha
a/ \(\dfrac{4x+2}{3x^2-x}:\dfrac{x^2+3x}{1-3x}=-\dfrac{4x+2}{x\left(1-3x\right)}\cdot\dfrac{1-3x}{x^2+3x}=-\dfrac{4x^2+2}{x\left(x^2+3x\right)}\)
b/ \(\dfrac{4x+6y}{x-1}:\dfrac{4x^2-12xy+9y^2}{1-x^2}=-\dfrac{2\left(2x+3y\right)}{1-x}\cdot\dfrac{\left(1-x\right)\left(1+x\right)}{\left(2x+3y\right)^2}=\dfrac{-2\left(x+1\right)}{2x+3y}=\dfrac{-2x-2}{2x+3y}\)
c/ \(\dfrac{x^4-xy^3}{2xy+y^2}:\dfrac{x^3+x^2y+xy^2}{2x+y}=\dfrac{x\left(x^3-y^3\right)}{y\left(2x+y\right)}\cdot\dfrac{2x+y}{x\left(x^2+xy+y^2\right)}=\dfrac{x\left(x-y\right)\left(x^2+xy+y^2\right)}{y}\cdot\dfrac{1}{x\left(x^2+xy+y^2\right)}=\dfrac{x-y}{y}\)
a,\(\frac{x^2+y^2-xy}{x^2-y^2}:\frac{x^3+y^3}{x^2+y^2-2xy} =\frac{x^2+y^2-xy}{(x-y)(x+y)}\frac{(x+y)^2}{(x+y) (x^2-xy+y^2)}=\frac{1}{x-y} \)
b,\(\frac{x^3y+xy^3}{x^4y}:(x^2+y^2)=\frac{xy(x^2+y^2)}{x^4y(x^2+y^2)}=\frac{1}{x^3} \)
c,\(\frac{x^2-xy}{y}:\frac{x^2-xy}{xy+y}:\frac{x^2-1}{x^2+y} =\frac{x(x-y)y(x+y)(x^2+y)}{yx(x-y)(x^2-1)} =\frac{(x^2+y)(x+y)}{x^2-1} \)
d,\(\frac{x^2+y}{y}:(\frac{z}{x^2}:\frac{xy}{x^2y})=\frac{x^2+y}{ y}:(\frac{z}{x^2}\frac{x^2y}{xy})=\frac{x^2+y}{y}\frac{z}{x} \)
a)\(\dfrac{2x^2-10xy}{2xy}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)
\(=\dfrac{2x\left(x-5y\right)}{2xy}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)
\(=\dfrac{x-5y}{y}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)
\(=\dfrac{x\left(x-5y\right)+x\left(5y-x\right)+y\left(x+2y\right)}{xy}\)
\(=\dfrac{x^2-5xy+5xy-x^2+xy+2y^2}{xy}\)
\(=\dfrac{y\left(x+2y\right)}{xy}\)
b) \(\dfrac{x+1}{2x-2}+\dfrac{x^2+3}{2-2x^2}\)
\(=\dfrac{x+1}{2x-2}-\dfrac{x^2+3}{2x^2-2}\)
\(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x^2-1\right)}\)
\(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\) MTC: \(2\left(x-1\right)\left(x+1\right)\)
\(=\dfrac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x+1\right)-\left(x^2+3\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x+1\right)^2-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)
e) \(\dfrac{2x^2-xy}{x-y}+\dfrac{xy+y^2}{y-x}+\dfrac{2y^2-x^2}{x-y}\)
\(=\dfrac{2x^2-xy}{x-y}-\dfrac{xy+y^2}{x-y}+\dfrac{2y^2-x^2}{x-y}\)
\(=\dfrac{\left(2x^2-xy\right)-\left(xy+y^2\right)+\left(2y^2-x^2\right)}{x-y}\)
\(=\dfrac{2x^2-xy-xy-y^2+2y^2-x^2}{x-y}\)
\(=\dfrac{x^2-2xy+y^2}{x-y}\)
\(=\dfrac{\left(x-y\right)^2}{x-y}\)
\(=x-y\)
Bài 1 dùng tam thức bậc 2, bài 2 chia cả tử và mẫu cho y2, đặt x/y=t rồi làm tương tự bài 1
ban lam bai 2 gium minh nha!