Tìm GTLN của \(H=\sqrt{x+1}+\sqrt{y-2}\) biết x + y =4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-3\\y\ge-4\end{matrix}\right.\)
\(gt\Rightarrow x+y=6\left(\sqrt{x+3}+\sqrt{4+y}\right)\le6\sqrt{2\left(x+y+7\right)}\)
\(\Rightarrow\left(x+y\right)^2\le72\left(x+y+7\right)\)
\(\Rightarrow\left(x+y\right)^2-72\left(x+y\right)-504\le0\)
\(\Rightarrow\left(x+y-36\right)^2\le1800\Rightarrow P\le36+30\sqrt{2}\)
max \(P=36+30\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+3=y+4\\x+y=36+30\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{37}{2}+15\sqrt{2}\\y=\frac{35}{2}+15\sqrt{2}\end{matrix}\right.\)
+ \(x+y=6\left(\sqrt{x+3}+\sqrt{y+4}\right)\)
\(\Rightarrow\left(x+y\right)^2=36\left(x+y+7+2\sqrt{\left(x+3\right)\left(y+4\right)}\right)\)
\(\Rightarrow\left(x+y\right)^2-36\left(x+y\right)-252=72\sqrt{\left(x+3\right)\left(y+4\right)}\ge0\)
\(\Rightarrow\left(x+y-42\right)\left(x+y+6\right)\ge0\Rightarrow x+y\ge42\)
Min \(P=42\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\left(x+3\right)\left(y+4\right)}=0\\x+y=42\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=45\end{matrix}\right.\\\left\{{}\begin{matrix}x=46\\y=-4\end{matrix}\right.\end{matrix}\right.\)
\(a.\)
\(\text{*)}\) Áp dụng bđt \(AM-GM\) cho hai số thực dương \(x,y,\) ta có:
\(x+y\ge2\sqrt{xy}=2\) (do \(xy=1\) )
\(\Rightarrow\) \(3\left(x+y\right)\ge6\)
nên \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)
\(\Rightarrow\) \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)
\(\text{*)}\) Tiếp tục áp dụng bđt \(AM-GM\) cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\) ta có:
\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)
Do đó, \(D\ge6+5=11\)
Dấu \("="\) xảy ra khi \(x=y=1\)
Vậy, \(D_{min}=11\) \(\Leftrightarrow\) \(x=y=1\)
\(b.\) Bạn tìm điểm rơi rồi báo lại đây
1) Áp dụng BĐT bunhia, ta có
\(P^2\le3\left(6a+6b+6c\right)=18\Rightarrow P\le3\sqrt{2}\)
Dấu = xảy ra <=> a=b=c=1/3
Ta có A = \(4\sqrt{x}+3\sqrt{1-x}\)\(\le1\sqrt{\left(4^2+3^2\right)\left(x+1-x\right)}=5\)
Bên cạnh đó \(0\le x\le1\)
=> A\(\ge3\)
Vậy GTNN là A = 3 khi x = 0, GTLN là A = 5 khi x = \(\frac{16}{25}\)
Từ giả thiết: \(x+y=4\Leftrightarrow x=4-y\)
Khi đó ta có: \(H=\sqrt{4-y+1}+\sqrt{y-2}\)
\(H=\sqrt{5-y}+\sqrt{y-2}\)
Áp dụng bđt Bunhiacopxki:
\(H^2=\left(\sqrt{5-y}+\sqrt{y-2}\right)^2\)
\(\le\left(1^2+1^2\right)\left(5-y+y-2\right)=6\)
\(\Leftrightarrow H\le\sqrt{6}\)
Dấu "=" xảy ra khi: \(y=\dfrac{7}{2}\). Dựa vào điều kiện \(x+y=4\) suy ra được \(x=\dfrac{1}{2}\)
Vậy \(max_H=\sqrt{6}\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};\dfrac{7}{2}\right)\)
Ta có :
\(H=\sqrt{x+1}+\sqrt{y-2}\)
\(\Leftrightarrow H^2=\left(\sqrt{x+1}+\sqrt{y-2}\right)^2\)
Theo BĐT Bu nhi a cốp xki ta có :
\(H^2=\left(\sqrt{x+1}+\sqrt{y-2}\right)^2\le\left(1^2+1^2\right)\left(x+1+y-2\right)=6\)
\(\Leftrightarrow H\le\sqrt{6}\)
Dấu \("="\) xảy ra khi : \(\left\{{}\begin{matrix}\sqrt{x+1}=\sqrt{y-2}\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\)
Vậy GTLN của H là \(\sqrt{6}\) khi \(x=\dfrac{1}{2}\) và \(y=\dfrac{7}{2}\)
Wish you study well !!!