Bài 3 : Cho hình chữ nhật ABCD có AB = 8cm, BC = 15cm
a> Tính BD
B> Vẽ AH ⊥ BD tại H. Tính AH
c> Đường thẳng AH cắt BC và DC lần lượt tại I và K. Chứng minh AH\(^2\) = HI . HK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: AD=BC
mà BC=15cm
nên AD=15cm
Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AB^2+AD^2\)
\(\Leftrightarrow BD^2=15^2+8^2=289\)
hay BD=17(cm)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:
\(AH\cdot BD=AB\cdot AD\)
\(\Leftrightarrow AH=\dfrac{8\cdot15}{17}=\dfrac{120}{17}\left(cm\right)\)
a,Vì ABCD là hình chữ nhật => BC = AD = 15 cm
Xét tam giác ABD vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác ABD
\(BD^2=AB^2+AD^2=64+225=289\Rightarrow BD=17\)cm
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AD^2}\Rightarrow\frac{1}{AH^2}=\frac{1}{64}+\frac{1}{225}=\frac{225+64}{64.225}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{289}{14400}\Leftrightarrow AH^2=\frac{14400}{289}\Leftrightarrow AH=\frac{120}{17}\)
b, Xét tam giác AHB vuông tại H đường cao HI
\(AH^2=IA.AB\)( hệ thức lượng ) (1)
Xét tam giác ABD vuông tại A đường cao AH
\(AH^2=DH.BH\)( hệ thức lượng ) (2)
Từ (1) ; (2) suy ra \(IA.AB=DH.BH\)( đpcm )
Hình bạn tự vẽ nhé <3
a/ Xét tam giác ABD vuông tại A
\(\Leftrightarrow BD^2=AB^2+AD^2\) (Định lí Py ta go)
\(\Leftrightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{8^2+15^2}=17\)
Vậy....
b/ Xét tam giác ABD vuông tại A
Đường cao AH
\(\Leftrightarrow BD.AH=AB.AD\)
\(\Leftrightarrow AH=\frac{AB.AD}{BD}=\frac{8.15}{17}=\frac{120}{17}\)
Vậy....
a: BD=17cm
b: \(AH=\dfrac{8\cdot15}{17}=\dfrac{120}{17}\left(cm\right)\)