K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Lời giải:

Với \(x=\sqrt{2}\) là nghiệm. Đặt

Đặt \(x^3+ax^2+bx+c=(x+\sqrt{2})(x+m)(x+n)\)

Thực hiện khai triển:

\(\Leftrightarrow x^3+ax^2+bx+c=x^3+x^2(m+n+\sqrt{2})+x(mn+\sqrt{2}m+\sqrt{2}n)+\sqrt{2}mn\)

Đồng nhất hệ số:

\(\Rightarrow \left\{\begin{matrix} m+n+\sqrt{2}=a\\ mn+\sqrt{2}(m+n)=b\\ \sqrt{2}mn=c\end{matrix}\right.(*)\)

\(\Rightarrow \frac{c}{\sqrt{2}}+\sqrt{2}.a=b+2\)

\(\Rightarrow \sqrt{2}(b+2)=c+2a\in\mathbb{Q}\)

\(b+2\in\mathbb{Q}; \sqrt{2}\not\in\mathbb{Q}\) nên điều trên xảy ra khi \(b+2=0\Leftrightarrow b=-2\)

Do đó: \(mn+\sqrt{2}(m+n)=-2\)

\(\Leftrightarrow (m+\sqrt{2})(n+\sqrt{2})=0\Rightarrow \left[\begin{matrix} m=-\sqrt{2}\\ n=-\sqrt{2}\end{matrix}\right.\)

Không mất tq, giả sử \(m=-\sqrt{2}\Rightarrow n=a\) (theo $(*)$)

Vậy 3 nghiệm của pt là: \((\sqrt{2}; -\sqrt{2}; a)\)

27 tháng 3 2020

tôi cũng là roronoa zoro đây

26 tháng 7 2016

căn3.A=B ,A,B thuộc Q  => A=B=0

26 tháng 7 2016

=> \(x-\sqrt{3}=0\)

lập phương lên là ra a,b,c

18 tháng 4 2017

Với a = 1, ta có phương trình:  x 3 + a x 2 - 4 x - 4 = 0

⇒ x 2 (x + 1) – 4(x + 1) = 0 ⇒ ( x 2  – 4)(x + 1) = 0

⇒ (x + 2)(x – 2)(x + 1) = 0

⇒ x + 2 = 0 hoặc x – 2 = 0 hoặc x + 1 = 0

      x + 2 = 0 ⇒ x = -2

      x – 2 = 0 ⇒ x = 2

      x + 1 = 0 ⇒ x = -1

Vậy phương trình có nghiệm: x = -2 hoặc x = 2 hoặc x = -1.

10 tháng 6 2021

giả sử \(x=\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\) là một nghiệm của pt \(ax^2+bx+c=0\)

\(\Leftrightarrow a\left(3+2\sqrt{2}\right)^2+b\left(3+2\sqrt{2}\right)+c=0\)

\(\Leftrightarrow\left(17a+3b+c\right)+2\left(6a+b\right)\sqrt{2}=0\)

Nếu \(6a+b\ne0\Rightarrow\sqrt{2}=-\frac{17a+3b+c}{2\left(6a+b\right)}\inℚ\) (vô lý)

\(\Rightarrow17a+3b+c=6a+b=0\)

\(\Rightarrow\hept{\begin{cases}b=-6a\\c=a\end{cases}}\)

Thay b và c vào pt đã cho ta được: \(\left(x^2-6x+1\right)\left(x^2-6x+1\right)=0\)

pt này có hai nghiệm là: \(\hept{\begin{cases}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{cases}}\)

16 tháng 4 2020

Ta có: \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=4-\sqrt{15}\)

Vì \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)là nghiệm của phương trình \(ax^2+bx+1=0\)nên:

\(a\left(4-\sqrt{15}\right)^2+b\left(4-\sqrt{15}\right)+1=0\)

\(\Leftrightarrow a\left(31-8\sqrt{15}\right)+4b-\sqrt{15}b+1=0\)

\(\Leftrightarrow31a-8\sqrt{15}a+4b-\sqrt{15}b+1=0\)

\(\Leftrightarrow\sqrt{15}\left(8a+b\right)=31a+4b+1\)

Do a b, là các số hữu tỉ nên \(31a+4b+1\)và \(8a+b\) là các số hữu tỉ

\(\Rightarrow\sqrt{15}\left(8a+b\right)\)là số hữu tỉ

Do đó \(\hept{\begin{cases}8a+b=0\\31a+4b+1=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-8\end{cases}}\)

Vậy a = 1; b = -8

12 tháng 10 2021

\(x=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{2-1}=3+2\sqrt{2}\)

Gọi \(x_1\) là nghiệm còn lại của pt đã cho

Theo Vi-ét, ta có

\(\left\{{}\begin{matrix}3+2\sqrt{2}+x_1=-\dfrac{b}{a}\\x_1\left(3+2\sqrt{2}\right)=\dfrac{1}{a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3+2\sqrt{2}+x_1=-\dfrac{b}{a}\\x_1=\dfrac{1}{a\left(3+2\sqrt{2}\right)}=\dfrac{3-2\sqrt{2}}{a}\end{matrix}\right.\)

Thế pt dưới lên pt trên, ta được:

\(3+2\sqrt{2}+\dfrac{3-2\sqrt{2}}{a}=-\dfrac{b}{a}\\ \Leftrightarrow a\left(3+2\sqrt{2}\right)-3-2\sqrt{2}=-b-6\\ \Leftrightarrow\left(3+2\sqrt{2}\right)\left(a-1\right)=-b-6\)

Vì a,b hữu tỉ nên \(a-1;-b-6\) hữu tỉ

Mà \(3+2\sqrt{2}\) vô tỉ nên \(a-1=0\Leftrightarrow a=1\)

\(\Leftrightarrow-b-6=0\Leftrightarrow b=-6\)

Vậy \(\left(a;b\right)=\left(1;-6\right)\)

 

12 tháng 10 2021

Nguyễn Hoàng Minh CTV, mk chưa học Vi-ét bạn à. Bn có thể giải cách khác dễ hiểu được ko??

a: Thay x=-2 vào pt, ta được:

\(-8+4a+2a-4=0\)

=>6a-12=0

hay a=2

Vậy: Pt là \(x^3+2x^2-2x-4=0\)

b: \(x^3+2x^2-2x-4=0\)

\(\Leftrightarrow x^2\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2\right)=0\)

hay \(x\in\left\{-2;\sqrt{2};-\sqrt{2}\right\}\)