Cho \(sinx+siny=2sin\left(x+y\right)\) với \(x+y\ne k\pi,k\in Z\).
Chứng minh rằng: \(tan\dfrac{x}{2}+tan\dfrac{y}{2}=\dfrac{1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2sin\left(x+y\right)=sinx+siny\)
\(\Leftrightarrow2.2.sin\dfrac{x+y}{2}.cos\dfrac{x+y}{2}=2.sin\dfrac{x+y}{2}.cos\dfrac{x-y}{2}\)
\(\Leftrightarrow2cos\dfrac{x+y}{2}=cos\dfrac{x-y}{2}\)
\(\Leftrightarrow2\left(cos\dfrac{x}{2}.cos\dfrac{y}{2}-sin\dfrac{x}{2}.sin\dfrac{y}{2}\right)=cos\dfrac{x}{2}.cos\dfrac{y}{2}+sin\dfrac{x}{2}.sin\dfrac{y}{2}\)
\(\Leftrightarrow cos\dfrac{x}{2}.cos\dfrac{y}{2}=3.sin\dfrac{x}{2}.sin\dfrac{y}{2}\)
\(\Leftrightarrow\left(sin\dfrac{x}{2}:cos\dfrac{x}{2}\right).\left(sin\dfrac{y}{2}:cos\dfrac{y}{2}\right)=\dfrac{1}{3}\)
\(\Leftrightarrow tan\dfrac{x}{2}.tan\dfrac{y}{2}=\dfrac{1}{3}\)
2sin(x+y)=sinx+siny2sin(x+y)=sinx+siny
⇔2.2.sinx+y2.cosx+y2=2.sinx+y2.cosx−y2⇔2.2.sinx+y2.cosx+y2=2.sinx+y2.cosx−y2
⇔2cosx+y2=cosx−y2⇔2cosx+y2=cosx−y2
⇔2(cosx2.cosy2−sinx2.siny2)=cosx2.cosy2+sinx2.siny2⇔2(cosx2.cosy2−sinx2.siny2)=cosx2.cosy2+sinx2.siny2
⇔cosx2.cosy2=3.sinx2.siny2⇔cosx2.cosy2=3.sinx2.siny2
⇔(sinx2:cosx2).(siny2:cosy2)=13⇔(sinx2:cosx2).(siny2:cosy2)=13
⇔tanx2.tany2=13⇔tanx2.tany2=13
\(A=\dfrac{4sin^4x-cos^2x\left(1-cos^2x\right)+sin^2x.cos^2x-2cos^2x}{sin^2x}+\dfrac{2}{tan^2x}\)
\(=\dfrac{4sin^4x-sin^2x.cos^2x+sin^2x.cos^2x-2cos^2x}{sin^2x}+2cot^2x\)
\(=4sin^2x-2cot^2x+2cot^2x=4sin^2x\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=2\end{matrix}\right.\)