\(5\dfrac{6}{4453}.\dfrac{1}{1997}-\dfrac{2}{1997}.2\dfrac{3}{4453}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a=4453, b=1997
Ta có: \(F=5\dfrac{6}{a}\cdot\dfrac{1}{b}-\dfrac{2}{b}\cdot2\dfrac{3}{a}\)
\(=\dfrac{5a+6}{a}\cdot\dfrac{1}{b}-\dfrac{2}{b}\cdot\dfrac{2a+3}{a}\)+
\(=\dfrac{5a+6-4a-6}{ab}\)
\(=\dfrac{1}{b}\)
\(=\dfrac{1}{1997}\)
Đặt \(a=\frac{1}{4453};b=\frac{1}{1997}\)ta có :
\(5\frac{6}{4453}\cdot\frac{1}{1997}-\frac{2}{1997}\cdot2\frac{3}{4453}\)
\(=\left(5+6a\right)\cdot b-2b\left(2+3a\right)\)
\(=5b+6ab-4b-6ab\)
\(=b=\frac{1}{1997}\)
a: =5991+3994=9985
b: =12,96+8,99=21,95
c:=3/5+2/5+3/4+5/8+1/2
=1+6/8+5/8+4/8
=1+15/8
=23/8
=>(x+1/1998+1)+(x+2/1997+1)=(x+3/1996+1)+(x+4/1995+1)
=>x+1999=0
=>x=-1999
\(a,\dfrac{1997}{1996}>1>\dfrac{1996}{1997}\\ b,\dfrac{3}{5}< 1< \dfrac{15}{13}\)
Đặt 4453=a; 1997=b
\(A=\left(5+\dfrac{6}{a}\right)\cdot\dfrac{1}{b}-\dfrac{2}{b}\cdot\left(2+\dfrac{3}{a}\right)\)
\(=\dfrac{5a+6}{a}\cdot\dfrac{1}{b}-\dfrac{2}{b}\cdot\dfrac{2a+3}{a}\)
\(=\dfrac{5a+6-4a-6}{ab}=\dfrac{a}{ab}=\dfrac{1}{b}=\dfrac{1}{1997}\)